Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2alanimi Structured version   Visualization version   GIF version

Theorem 2alanimi 41879
Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.)
Hypothesis
Ref Expression
2alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
2alanimi ((∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∀𝑥𝑦𝜒)

Proof of Theorem 2alanimi
StepHypRef Expression
1 2alanimi.1 . . 3 ((𝜑𝜓) → 𝜒)
21alanimi 1820 . 2 ((∀𝑦𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜒)
32alanimi 1820 1 ((∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∀𝑥𝑦𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator