| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2alanimi | Structured version Visualization version GIF version | ||
| Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 2alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 2alanimi | ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alanimi.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | alanimi 1816 | . 2 ⊢ ((∀𝑦𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜒) |
| 3 | 2 | alanimi 1816 | 1 ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |