| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alanimi 1816 alimdh 1817 albi 1818 aleximi 1832 19.33b 1885 aevlem0 2055 sbi1 2072 axc16g 2261 axc11r 2367 axc10 2384 axc15 2421 sb2 2478 moim 2538 2eu6 2651 ral2imi 3069 ceqsalt 3484 spcimgft 3515 elabgtOLD 3642 elabgtOLDOLD 3643 sstr2 3956 ssralv 4018 difin0ss 4339 sepexlem 5257 axprlem2 5382 axnulg 35089 hbntg 35800 bj-2alim 36605 bj-cbvalimt 36634 bj-axc10v 36788 bj-sblem1 36837 bj-sblem2 36838 bj-ceqsalt0 36879 bj-ceqsalt1 36880 wl-spae 37516 wl-aetr 37524 wl-axc11r 37525 wl-aleq 37530 wl-nfeqfb 37531 axc11-o 38951 pm10.57 44367 2al2imi 44369 19.41rg 44547 hbntal 44550 |
| Copyright terms: Public domain | W3C validator |