![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1817 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: alanimi 1819 alimdh 1820 albi 1821 aleximi 1835 19.33b 1889 aevlem0 2058 sbi1 2075 axc16g 2252 axc11r 2366 axc10 2385 axc15 2422 sb2 2479 moim 2539 2eu6 2653 ral2imi 3086 ceqsalt 3506 elabgt 3663 difin0ss 4369 axprlem2 5423 hbntg 34777 bj-2alim 35488 bj-cbvalimt 35516 bj-axc10v 35671 bj-sblem1 35721 bj-sblem2 35722 bj-ceqsalt0 35764 bj-ceqsalt1 35765 wl-spae 36390 wl-aetr 36398 wl-axc11r 36399 wl-aleq 36404 wl-nfeqfb 36405 axc11-o 37821 pm10.57 43130 2al2imi 43132 19.41rg 43311 hbntal 43314 |
Copyright terms: Public domain | W3C validator |