Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1817 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: alanimi 1819 alimdh 1820 albi 1821 aleximi 1834 19.33b 1888 aevlem0 2057 sbi1 2074 axc16g 2252 axc11r 2366 axc10 2385 axc15 2422 sb2 2480 moim 2544 2eu6 2658 ral2imi 3082 ceqsalt 3462 elabgt 3603 difin0ss 4302 axprlem2 5347 hbntg 33781 bj-2alim 34792 bj-cbvalimt 34820 bj-axc10v 34975 bj-sblem1 35026 bj-sblem2 35027 bj-ceqsalt0 35069 bj-ceqsalt1 35070 wl-spae 35680 wl-aetr 35688 wl-axc11r 35689 wl-aleq 35694 wl-nfeqfb 35695 axc11-o 36965 pm10.57 41989 2al2imi 41991 19.41rg 42170 hbntal 42173 |
Copyright terms: Public domain | W3C validator |