![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1797 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
This theorem is referenced by: alanimi 1816 alimdh 1817 albi 1818 aleximi 1832 19.33b 1886 aevlem0 2055 sbi1 2072 axc16g 2249 axc11r 2363 axc10 2382 axc15 2419 sb2 2476 moim 2536 2eu6 2650 ral2imi 3083 ceqsalt 3504 elabgt 3661 difin0ss 4367 axprlem2 5421 hbntg 35081 bj-2alim 35791 bj-cbvalimt 35819 bj-axc10v 35974 bj-sblem1 36024 bj-sblem2 36025 bj-ceqsalt0 36067 bj-ceqsalt1 36068 wl-spae 36693 wl-aetr 36701 wl-axc11r 36702 wl-aleq 36707 wl-nfeqfb 36708 axc11-o 38124 pm10.57 43432 2al2imi 43434 19.41rg 43613 hbntal 43616 |
Copyright terms: Public domain | W3C validator |