| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alanimi 1816 alimdh 1817 albi 1818 aleximi 1832 19.33b 1885 aevlem0 2055 sbi1 2072 axc16g 2261 axc11r 2371 axc10 2390 axc15 2427 sb2 2484 moim 2544 2eu6 2657 ral2imi 3076 ceqsalt 3499 spcimgft 3530 elabgt 3656 elabgtOLD 3657 sstr2 3970 ssralv 4032 difin0ss 4353 sepexlem 5274 axprlem2 5399 axnulg 35128 hbntg 35828 bj-2alim 36633 bj-cbvalimt 36662 bj-axc10v 36816 bj-sblem1 36865 bj-sblem2 36866 bj-ceqsalt0 36907 bj-ceqsalt1 36908 wl-spae 37544 wl-aetr 37552 wl-axc11r 37553 wl-aleq 37558 wl-nfeqfb 37559 axc11-o 38974 pm10.57 44362 2al2imi 44364 19.41rg 44542 hbntal 44545 |
| Copyright terms: Public domain | W3C validator |