![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1811 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1794 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1792 ax-4 1806 |
This theorem is referenced by: alanimi 1813 alimdh 1814 albi 1815 aleximi 1829 19.33b 1883 aevlem0 2052 sbi1 2069 axc16g 2258 axc11r 2369 axc10 2388 axc15 2425 sb2 2482 moim 2542 2eu6 2655 ral2imi 3083 ceqsalt 3513 spcimgft 3546 elabgt 3672 elabgtOLD 3673 sstr2 4002 ssralv 4064 difin0ss 4379 sepexlem 5305 axprlem2 5430 axnulg 35085 hbntg 35787 bj-2alim 36593 bj-cbvalimt 36622 bj-axc10v 36776 bj-sblem1 36825 bj-sblem2 36826 bj-ceqsalt0 36867 bj-ceqsalt1 36868 wl-spae 37502 wl-aetr 37510 wl-axc11r 37511 wl-aleq 37516 wl-nfeqfb 37517 axc11-o 38933 pm10.57 44367 2al2imi 44369 19.41rg 44548 hbntal 44551 |
Copyright terms: Public domain | W3C validator |