| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alanimi 1816 alimdh 1817 albi 1818 aleximi 1832 19.33b 1885 aevlem0 2055 sbi1 2072 axc16g 2261 axc11r 2366 axc10 2383 axc15 2420 sb2 2477 moim 2537 2eu6 2650 ral2imi 3068 ceqsalt 3472 spcimgft 3503 elabgtOLD 3630 elabgtOLDOLD 3631 sstr2 3944 ssralv 4006 difin0ss 4326 sepexlem 5241 axprlem2 5366 axnulg 35058 hbntg 35778 bj-2alim 36583 bj-cbvalimt 36612 bj-axc10v 36766 bj-sblem1 36815 bj-sblem2 36816 bj-ceqsalt0 36857 bj-ceqsalt1 36858 wl-spae 37494 wl-aetr 37502 wl-axc11r 37503 wl-aleq 37508 wl-nfeqfb 37509 axc11-o 38929 pm10.57 44344 2al2imi 44346 19.41rg 44524 hbntal 44527 |
| Copyright terms: Public domain | W3C validator |