| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1815 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 |
| This theorem is referenced by: alanimi 1817 alimdh 1818 albi 1819 aleximi 1833 19.33b 1886 aevlem0 2057 sbi1 2074 axc16g 2263 axc11r 2368 axc10 2385 axc15 2422 sb2 2479 moim 2539 2eu6 2652 ral2imi 3071 ceqsalt 3470 spcimgft 3501 elabgtOLD 3628 elabgtOLDOLD 3629 sstr2 3941 ssralv 4003 difin0ss 4323 sepexlem 5237 axprlem2 5362 axnulg 35110 hbntg 35838 bj-2alim 36643 bj-cbvalimt 36672 bj-axc10v 36826 bj-sblem1 36875 bj-sblem2 36876 bj-ceqsalt0 36917 bj-ceqsalt1 36918 wl-spae 37554 wl-aetr 37562 wl-axc11r 37563 wl-aleq 37568 wl-nfeqfb 37569 axc11-o 38989 pm10.57 44403 2al2imi 44405 19.41rg 44582 hbntal 44585 |
| Copyright terms: Public domain | W3C validator |