![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1808 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1791 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: alanimi 1810 alimdh 1811 albi 1812 aleximi 1826 19.33b 1880 aevlem0 2049 sbi1 2066 axc16g 2246 axc11r 2359 axc10 2378 axc15 2415 sb2 2472 moim 2532 2eu6 2645 ral2imi 3075 ceqsalt 3496 elabgt 3658 elabgtOLD 3659 sstr2 3984 ssralv 4046 difin0ss 4369 axprlem2 5423 hbntg 35471 bj-2alim 36157 bj-cbvalimt 36185 bj-axc10v 36340 bj-sblem1 36389 bj-sblem2 36390 bj-ceqsalt0 36432 bj-ceqsalt1 36433 wl-spae 37058 wl-aetr 37066 wl-axc11r 37067 wl-aleq 37072 wl-nfeqfb 37073 axc11-o 38492 pm10.57 43873 2al2imi 43875 19.41rg 44054 hbntal 44057 |
Copyright terms: Public domain | W3C validator |