![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1809 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1792 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1790 ax-4 1804 |
This theorem is referenced by: alanimi 1811 alimdh 1812 albi 1813 aleximi 1827 19.33b 1881 aevlem0 2050 sbi1 2067 axc16g 2244 axc11r 2360 axc10 2379 axc15 2416 sb2 2473 moim 2533 2eu6 2647 ral2imi 3080 ceqsalt 3501 elabgt 3658 elabgtOLD 3659 difin0ss 4364 axprlem2 5418 hbntg 35337 bj-2alim 36023 bj-cbvalimt 36051 bj-axc10v 36206 bj-sblem1 36255 bj-sblem2 36256 bj-ceqsalt0 36298 bj-ceqsalt1 36299 wl-spae 36924 wl-aetr 36932 wl-axc11r 36933 wl-aleq 36938 wl-nfeqfb 36939 axc11-o 38360 pm10.57 43731 2al2imi 43733 19.41rg 43912 hbntal 43915 |
Copyright terms: Public domain | W3C validator |