Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1818 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1799 ax-4 1813 |
This theorem is referenced by: alanimi 1820 alimdh 1821 albi 1822 aleximi 1835 19.33b 1889 aevlem0 2058 sbi1 2075 axc16g 2255 axc11r 2366 axc10 2385 axc15 2422 sb2 2480 moim 2544 2eu6 2658 ral2imi 3081 ceqsalt 3452 elabgt 3596 difin0ss 4299 axprlem2 5342 hbntg 33687 bj-2alim 34719 bj-cbvalimt 34747 bj-axc10v 34902 bj-sblem1 34953 bj-sblem2 34954 bj-ceqsalt0 34996 bj-ceqsalt1 34997 wl-spae 35607 wl-aetr 35615 wl-axc11r 35616 wl-aleq 35621 wl-nfeqfb 35622 axc11-o 36892 pm10.57 41878 2al2imi 41880 19.41rg 42059 hbntal 42062 |
Copyright terms: Public domain | W3C validator |