Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1817 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: alanimi 1819 alimdh 1820 albi 1821 aleximi 1834 19.33b 1888 aevlem0 2057 sbi1 2074 axc16g 2252 axc11r 2366 axc10 2385 axc15 2422 sb2 2480 moim 2544 2eu6 2658 ral2imi 3082 ceqsalt 3461 elabgt 3604 difin0ss 4304 axprlem2 5347 hbntg 33768 bj-2alim 34779 bj-cbvalimt 34807 bj-axc10v 34962 bj-sblem1 35013 bj-sblem2 35014 bj-ceqsalt0 35056 bj-ceqsalt1 35057 wl-spae 35667 wl-aetr 35675 wl-axc11r 35676 wl-aleq 35681 wl-nfeqfb 35682 axc11-o 36952 pm10.57 41949 2al2imi 41951 19.41rg 42130 hbntal 42133 |
Copyright terms: Public domain | W3C validator |