![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1812 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1795 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 |
This theorem is referenced by: alanimi 1814 alimdh 1815 albi 1816 aleximi 1830 19.33b 1884 aevlem0 2054 sbi1 2071 axc16g 2261 axc11r 2374 axc10 2393 axc15 2430 sb2 2487 moim 2547 2eu6 2660 ral2imi 3091 ceqsalt 3523 spcimgft 3558 elabgt 3685 elabgtOLD 3686 sstr2 4015 ssralv 4077 difin0ss 4396 axprlem2 5442 axnulg 35068 hbntg 35769 bj-2alim 36576 bj-cbvalimt 36605 bj-axc10v 36759 bj-sblem1 36808 bj-sblem2 36809 bj-ceqsalt0 36850 bj-ceqsalt1 36851 wl-spae 37475 wl-aetr 37483 wl-axc11r 37484 wl-aleq 37489 wl-nfeqfb 37490 axc11-o 38907 pm10.57 44340 2al2imi 44342 19.41rg 44521 hbntal 44524 |
Copyright terms: Public domain | W3C validator |