| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1814 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: alanimi 1816 alimdh 1817 albi 1818 aleximi 1832 19.33b 1885 aevlem0 2055 sbi1 2072 axc16g 2261 axc11r 2366 axc10 2383 axc15 2420 sb2 2477 moim 2537 2eu6 2650 ral2imi 3068 ceqsalt 3481 spcimgft 3512 elabgtOLD 3639 elabgtOLDOLD 3640 sstr2 3953 ssralv 4015 difin0ss 4336 sepexlem 5254 axprlem2 5379 axnulg 35082 hbntg 35793 bj-2alim 36598 bj-cbvalimt 36627 bj-axc10v 36781 bj-sblem1 36830 bj-sblem2 36831 bj-ceqsalt0 36872 bj-ceqsalt1 36873 wl-spae 37509 wl-aetr 37517 wl-axc11r 37518 wl-aleq 37523 wl-nfeqfb 37524 axc11-o 38944 pm10.57 44360 2al2imi 44362 19.41rg 44540 hbntal 44543 |
| Copyright terms: Public domain | W3C validator |