MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  al2imi Structured version   Visualization version   GIF version

Theorem al2imi 1809
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.)
Hypothesis
Ref Expression
al2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
al2imi (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))

Proof of Theorem al2imi
StepHypRef Expression
1 al2im 1808 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
2 al2imi.1 . 2 (𝜑 → (𝜓𝜒))
31, 2mpg 1791 1 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1789  ax-4 1803
This theorem is referenced by:  alanimi  1810  alimdh  1811  albi  1812  aleximi  1826  19.33b  1880  aevlem0  2049  sbi1  2066  axc16g  2246  axc11r  2359  axc10  2378  axc15  2415  sb2  2472  moim  2532  2eu6  2645  ral2imi  3075  ceqsalt  3496  elabgt  3658  elabgtOLD  3659  sstr2  3984  ssralv  4046  difin0ss  4369  axprlem2  5423  hbntg  35471  bj-2alim  36157  bj-cbvalimt  36185  bj-axc10v  36340  bj-sblem1  36389  bj-sblem2  36390  bj-ceqsalt0  36432  bj-ceqsalt1  36433  wl-spae  37058  wl-aetr  37066  wl-axc11r  37067  wl-aleq  37072  wl-nfeqfb  37073  axc11-o  38492  pm10.57  43873  2al2imi  43875  19.41rg  44054  hbntal  44057
  Copyright terms: Public domain W3C validator