| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | al2im 1815 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
| 2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 |
| This theorem is referenced by: alanimi 1817 alimdh 1818 albi 1819 aleximi 1833 19.33b 1886 aevlem0 2057 sbi1 2076 axc16g 2265 axc11r 2370 axc10 2387 axc15 2424 sb2 2481 moim 2541 2eu6 2654 ral2imi 3072 ceqsalt 3471 spcimgft 3500 elabgtOLD 3624 elabgtOLDOLD 3625 sstr2 3937 ssralv 3999 difin0ss 4322 sepexlem 5239 axprlem2 5364 axnulg 35140 hbntg 35868 bj-2alim 36675 bj-cbvalimt 36704 bj-axc10v 36858 bj-sblem1 36907 bj-sblem2 36908 bj-ceqsalt0 36949 bj-ceqsalt1 36950 wl-spae 37586 wl-aetr 37594 wl-axc11r 37595 wl-aleq 37600 wl-nfeqfb 37601 axc11-o 39070 pm10.57 44488 2al2imi 44490 19.41rg 44667 hbntal 44670 |
| Copyright terms: Public domain | W3C validator |