![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1777 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1760 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1758 ax-4 1772 |
This theorem is referenced by: alanimi 1779 alimdh 1780 albi 1781 aleximi 1794 19.33b 1848 aevlem0 2003 sbi1 2022 axc16g 2187 sbi1vOLD 2246 axc11r 2300 axc10 2315 axc15 2357 sb2 2424 sbequiOLD 2455 sbi1OLD 2463 sbequiALT 2523 sbi1ALT 2533 moim 2552 2eu6 2689 ral2imi 3107 ceqsalt 3449 difin0ss 4215 axprlem2 5181 hbntg 32568 bj-2alim 33457 bj-cbvalimt 33480 bj-axc10v 33567 bj-sblem1 33654 bj-sblem2 33655 bj-ceqsalt0 33690 bj-ceqsalt1 33691 wl-spae 34201 wl-aetr 34209 wl-aleq 34214 wl-nfeqfb 34215 axc11-o 35529 pm10.57 40116 2al2imi 40118 19.41rg 40300 hbntal 40303 |
Copyright terms: Public domain | W3C validator |