|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version | ||
| Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) | 
| Ref | Expression | 
|---|---|
| albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | al2imi 1814 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | 
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | al2imi 1814 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) | 
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: albii 1818 nfbiit 1850 albidh 1865 19.16 2224 19.17 2225 equvel 2460 eqeq1d 2738 raleqbidvvOLD 3334 rmoeq1 3415 ralss 4057 intmin4 4976 dfiin2g 5031 eunex 5389 bj-2albi 36615 bj-hbxfrbi 36632 bj-pm11.53vw 36778 bj-sblem 36846 wl-aleq 37537 wl-sb8ft 37552 2albi 44402 ralbidar 44469 trsbcVD 44902 sbcssgVD 44908 ichal 47458 | 
| Copyright terms: Public domain | W3C validator |