| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version | ||
| Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | al2imi 1816 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | al2imi 1816 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: albii 1820 nfbiit 1852 albidh 1867 19.16 2228 19.17 2229 equvel 2456 eqeq1d 2733 raleqbidvvOLD 3301 rmoeq1 3377 elabgt 3627 ralss 4009 intmin4 4927 dfiin2g 4981 eunex 5328 bj-2albi 36646 bj-hbxfrbi 36663 bj-pm11.53vw 36809 bj-sblem 36877 wl-aleq 37568 wl-sb8ft 37583 2albi 44410 ralbidar 44476 trsbcVD 44908 sbcssgVD 44914 ichal 47496 |
| Copyright terms: Public domain | W3C validator |