Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version |
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 218 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | al2imi 1817 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
3 | biimpr 223 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | al2imi 1817 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) |
5 | 2, 4 | impbid 215 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: albii 1821 nfbiit 1852 albidh 1867 19.16 2225 19.17 2226 equvel 2468 eqeq1d 2760 intmin4 4870 dfiin2g 4924 eunex 5262 bj-2albi 34367 bj-hbxfrbi 34383 bj-sblem 34590 wl-aleq 35246 2albi 41483 ralbidar 41550 trsbcVD 41984 sbcssgVD 41990 ichal 44379 |
Copyright terms: Public domain | W3C validator |