![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version |
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | al2imi 1812 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | al2imi 1812 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) |
5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: albii 1816 nfbiit 1848 albidh 1864 19.16 2223 19.17 2224 equvel 2459 eqeq1d 2737 raleqbidvvOLD 3333 rmoeq1 3414 intmin4 4982 dfiin2g 5037 eunex 5396 bj-2albi 36596 bj-hbxfrbi 36613 bj-pm11.53vw 36759 bj-sblem 36827 wl-aleq 37516 wl-sb8ft 37531 2albi 44374 ralbidar 44441 trsbcVD 44875 sbcssgVD 44881 ichal 47391 |
Copyright terms: Public domain | W3C validator |