MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   GIF version

Theorem albi 1819
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem albi
StepHypRef Expression
1 biimp 215 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21al2imi 1816 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
3 biimpr 220 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43al2imi 1816 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑))
52, 4impbid 212 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  albii  1820  nfbiit  1852  albidh  1867  19.16  2228  19.17  2229  equvel  2456  eqeq1d  2733  raleqbidvvOLD  3301  rmoeq1  3377  elabgt  3627  ralss  4009  intmin4  4927  dfiin2g  4981  eunex  5328  bj-2albi  36646  bj-hbxfrbi  36663  bj-pm11.53vw  36809  bj-sblem  36877  wl-aleq  37568  wl-sb8ft  37583  2albi  44410  ralbidar  44476  trsbcVD  44908  sbcssgVD  44914  ichal  47496
  Copyright terms: Public domain W3C validator