MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   GIF version

Theorem albi 1816
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem albi
StepHypRef Expression
1 biimp 215 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21al2imi 1813 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
3 biimpr 220 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43al2imi 1813 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑))
52, 4impbid 212 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  albii  1817  nfbiit  1849  albidh  1865  19.16  2226  19.17  2227  equvel  2464  eqeq1d  2742  raleqbidvvOLD  3343  rmoeq1  3425  intmin4  5001  dfiin2g  5055  eunex  5408  bj-2albi  36579  bj-hbxfrbi  36596  bj-pm11.53vw  36742  bj-sblem  36810  wl-aleq  37489  wl-sb8ft  37504  2albi  44347  ralbidar  44414  trsbcVD  44848  sbcssgVD  44854  ichal  47340
  Copyright terms: Public domain W3C validator