| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version | ||
| Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| 3 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | 3 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: albii 1819 nfbiit 1851 albidh 1866 19.16 2226 19.17 2227 equvel 2454 eqeq1d 2731 raleqbidvvOLD 3299 rmoeq1 3378 elabgt 3629 ralss 4012 intmin4 4930 dfiin2g 4984 eunex 5332 bj-2albi 36586 bj-hbxfrbi 36603 bj-pm11.53vw 36749 bj-sblem 36817 wl-aleq 37508 wl-sb8ft 37523 2albi 44351 ralbidar 44418 trsbcVD 44850 sbcssgVD 44856 ichal 47451 |
| Copyright terms: Public domain | W3C validator |