MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   GIF version

Theorem albi 1822
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem albi
StepHypRef Expression
1 biimp 214 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21al2imi 1819 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
3 biimpr 219 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43al2imi 1819 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑))
52, 4impbid 211 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  albii  1823  nfbiit  1854  albidh  1870  19.16  2221  19.17  2222  equvel  2456  eqeq1d  2740  raleqbidvv  3329  intmin4  4905  dfiin2g  4958  eunex  5308  bj-2albi  34722  bj-hbxfrbi  34738  bj-pm11.53vw  34885  bj-sblem  34955  wl-aleq  35621  2albi  41885  ralbidar  41952  trsbcVD  42386  sbcssgVD  42392  ichal  44806
  Copyright terms: Public domain W3C validator