MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   GIF version

Theorem albi 1821
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem albi
StepHypRef Expression
1 biimp 214 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21al2imi 1818 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
3 biimpr 219 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43al2imi 1818 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑))
52, 4impbid 211 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  albii  1822  nfbiit  1854  albidh  1870  19.16  2219  19.17  2220  equvel  2456  eqeq1d  2735  raleqbidvvOLD  3331  rmoeq1  3415  intmin4  4982  dfiin2g  5036  eunex  5389  bj-2albi  35491  bj-hbxfrbi  35507  bj-pm11.53vw  35654  bj-sblem  35723  wl-aleq  36404  2albi  43137  ralbidar  43204  trsbcVD  43638  sbcssgVD  43644  ichal  46134
  Copyright terms: Public domain W3C validator