Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albi | Structured version Visualization version GIF version |
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
albi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 214 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | al2imi 1818 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
3 | biimpr 219 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
4 | 3 | al2imi 1818 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑)) |
5 | 2, 4 | impbid 211 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: albii 1822 nfbiit 1853 albidh 1869 19.16 2218 19.17 2219 equvel 2456 eqeq1d 2740 raleqbidvv 3338 intmin4 4908 dfiin2g 4962 eunex 5313 bj-2albi 34795 bj-hbxfrbi 34811 bj-pm11.53vw 34958 bj-sblem 35028 wl-aleq 35694 2albi 41996 ralbidar 42063 trsbcVD 42497 sbcssgVD 42503 ichal 44918 |
Copyright terms: Public domain | W3C validator |