MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   GIF version

Theorem albi 1818
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem albi
StepHypRef Expression
1 biimp 215 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21al2imi 1815 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
3 biimpr 220 . . 3 ((𝜑𝜓) → (𝜓𝜑))
43al2imi 1815 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜓 → ∀𝑥𝜑))
52, 4impbid 212 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  albii  1819  nfbiit  1851  albidh  1866  19.16  2226  19.17  2227  equvel  2461  eqeq1d  2738  raleqbidvvOLD  3318  rmoeq1  3400  ralss  4038  intmin4  4958  dfiin2g  5013  eunex  5365  bj-2albi  36636  bj-hbxfrbi  36653  bj-pm11.53vw  36799  bj-sblem  36867  wl-aleq  37558  wl-sb8ft  37573  2albi  44369  ralbidar  44436  trsbcVD  44868  sbcssgVD  44874  ichal  47447
  Copyright terms: Public domain W3C validator