MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2falsedOLD Structured version   Visualization version   GIF version

Theorem 2falsedOLD 381
Description: Obsolete version of 2falsed 380 as of 11-Apr-2024. (Contributed by NM, 11-Oct-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsedOLD (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsedOLD
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 121 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 121 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 215 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator