MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2falsed Structured version   Visualization version   GIF version

Theorem 2falsed 376
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
2 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
31, 22thd 265 . 2 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
43con4bid 317 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.21ni  377  bianfd  534  sbcel12  4434  sbcne12  4438  sbcel2  4441  sbcbr  5221  csbxp  5799  smoord  8421  tfr2b  8452  axrepnd  10663  hasheq0  14412  m1exp1  16424  sadcadd  16504  stdbdxmet  24549  iccpnfcnv  24994  cxple2  26757  mirbtwnhl  28706  eupth2lem1  30250  ifnebib  32572  isoun  32713  1smat1  33750  xrge0iifcnv  33879  sgn0bi  34512  signswch  34538  fmlafvel  35353  fz0n  35693  hfext  36147  unccur  37563  ntrneiel2  44048  ntrneik4w  44062  eliin2f  45006
  Copyright terms: Public domain W3C validator