| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4361 sbcne12 4365 sbcel2 4368 sbcbr 5146 csbxp 5716 smoord 8285 tfr2b 8315 axrepnd 10482 hasheq0 14267 m1exp1 16284 sadcadd 16366 stdbdxmet 24428 iccpnfcnv 24867 cxple2 26631 mirbtwnhl 28656 eupth2lem1 30193 ifnebib 32524 isoun 32678 sgn0bi 32818 1smat1 33812 xrge0iifcnv 33941 signswch 34569 fmlafvel 35417 fz0n 35763 hfext 36216 unccur 37642 ntrneiel2 44118 ntrneik4w 44132 eliin2f 45140 |
| Copyright terms: Public domain | W3C validator |