![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21ni 379 bianfd 536 sbcel12 4409 sbcne12 4413 sbcel2 4416 sbcbr 5204 csbxp 5776 smoord 8365 tfr2b 8396 axrepnd 10589 hasheq0 14323 m1exp1 16319 sadcadd 16399 stdbdxmet 24024 iccpnfcnv 24460 cxple2 26205 mirbtwnhl 27962 eupth2lem1 29502 ifnebib 31812 isoun 31954 1smat1 32815 xrge0iifcnv 32944 sgn0bi 33577 signswch 33603 fmlafvel 34407 fz0n 34731 hfext 35186 unccur 36519 ntrneiel2 42885 ntrneik4w 42899 eliin2f 43841 |
Copyright terms: Public domain | W3C validator |