![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4434 sbcne12 4438 sbcel2 4441 sbcbr 5221 csbxp 5799 smoord 8421 tfr2b 8452 axrepnd 10663 hasheq0 14412 m1exp1 16424 sadcadd 16504 stdbdxmet 24549 iccpnfcnv 24994 cxple2 26757 mirbtwnhl 28706 eupth2lem1 30250 ifnebib 32572 isoun 32713 1smat1 33750 xrge0iifcnv 33879 sgn0bi 34512 signswch 34538 fmlafvel 35353 fz0n 35693 hfext 36147 unccur 37563 ntrneiel2 44048 ntrneik4w 44062 eliin2f 45006 |
Copyright terms: Public domain | W3C validator |