Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 264 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21ni 379 bianfd 535 sbcel12 4342 sbcne12 4346 sbcel2 4349 sbcbr 5129 csbxp 5686 smoord 8196 tfr2b 8227 axrepnd 10350 hasheq0 14078 m1exp1 16085 sadcadd 16165 stdbdxmet 23671 iccpnfcnv 24107 cxple2 25852 mirbtwnhl 27041 eupth2lem1 28582 isoun 31034 1smat1 31754 xrge0iifcnv 31883 sgn0bi 32514 signswch 32540 fmlafvel 33347 fz0n 33696 hfext 34485 unccur 35760 ntrneiel2 41696 ntrneik4w 41710 eliin2f 42654 |
Copyright terms: Public domain | W3C validator |