| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4386 sbcne12 4390 sbcel2 4393 sbcbr 5174 csbxp 5754 smoord 8379 tfr2b 8410 axrepnd 10608 hasheq0 14381 m1exp1 16395 sadcadd 16477 stdbdxmet 24454 iccpnfcnv 24893 cxple2 26658 mirbtwnhl 28659 eupth2lem1 30199 ifnebib 32530 isoun 32679 sgn0bi 32819 1smat1 33835 xrge0iifcnv 33964 signswch 34593 fmlafvel 35407 fz0n 35748 hfext 36201 unccur 37627 ntrneiel2 44110 ntrneik4w 44124 eliin2f 45128 |
| Copyright terms: Public domain | W3C validator |