Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 264 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 316 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21ni 378 bianfd 534 sbcel12 4339 sbcne12 4343 sbcel2 4346 sbcbr 5125 csbxp 5676 smoord 8167 tfr2b 8198 axrepnd 10281 hasheq0 14006 m1exp1 16013 sadcadd 16093 stdbdxmet 23577 iccpnfcnv 24013 cxple2 25757 mirbtwnhl 26945 eupth2lem1 28483 isoun 30936 1smat1 31656 xrge0iifcnv 31785 sgn0bi 32414 signswch 32440 fmlafvel 33247 fz0n 33602 hfext 34412 unccur 35687 ntrneiel2 41585 ntrneik4w 41599 eliin2f 42543 |
Copyright terms: Public domain | W3C validator |