MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2falsed Structured version   Visualization version   GIF version

Theorem 2falsed 376
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
2 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
31, 22thd 264 . 2 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
43con4bid 316 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.21ni  378  bianfd  534  sbcel12  4339  sbcne12  4343  sbcel2  4346  sbcbr  5125  csbxp  5676  smoord  8167  tfr2b  8198  axrepnd  10281  hasheq0  14006  m1exp1  16013  sadcadd  16093  stdbdxmet  23577  iccpnfcnv  24013  cxple2  25757  mirbtwnhl  26945  eupth2lem1  28483  isoun  30936  1smat1  31656  xrge0iifcnv  31785  sgn0bi  32414  signswch  32440  fmlafvel  33247  fz0n  33602  hfext  34412  unccur  35687  ntrneiel2  41585  ntrneik4w  41599  eliin2f  42543
  Copyright terms: Public domain W3C validator