| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4360 sbcne12 4364 sbcel2 4367 sbcbr 5148 csbxp 5720 smoord 8291 tfr2b 8321 axrepnd 10492 hasheq0 14272 m1exp1 16289 sadcadd 16371 stdbdxmet 24431 iccpnfcnv 24870 cxple2 26634 mirbtwnhl 28659 eupth2lem1 30200 ifnebib 32531 isoun 32687 sgn0bi 32828 1smat1 33838 xrge0iifcnv 33967 signswch 34595 fmlafvel 35450 fz0n 35796 hfext 36248 unccur 37663 ntrneiel2 44203 ntrneik4w 44217 eliin2f 45225 |
| Copyright terms: Public domain | W3C validator |