![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4417 sbcne12 4421 sbcel2 4424 sbcbr 5203 csbxp 5788 smoord 8404 tfr2b 8435 axrepnd 10632 hasheq0 14399 m1exp1 16410 sadcadd 16492 stdbdxmet 24544 iccpnfcnv 24989 cxple2 26754 mirbtwnhl 28703 eupth2lem1 30247 ifnebib 32570 isoun 32717 1smat1 33765 xrge0iifcnv 33894 sgn0bi 34529 signswch 34555 fmlafvel 35370 fz0n 35711 hfext 36165 unccur 37590 ntrneiel2 44076 ntrneik4w 44090 eliin2f 45044 |
Copyright terms: Public domain | W3C validator |