MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2falsed Structured version   Visualization version   GIF version

Theorem 2falsed 376
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
2 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
31, 22thd 265 . 2 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))
43con4bid 317 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.21ni  377  bianfd  534  sbcel12  4377  sbcne12  4381  sbcel2  4384  sbcbr  5165  csbxp  5741  smoord  8337  tfr2b  8367  axrepnd  10554  hasheq0  14335  m1exp1  16353  sadcadd  16435  stdbdxmet  24410  iccpnfcnv  24849  cxple2  26613  mirbtwnhl  28614  eupth2lem1  30154  ifnebib  32485  isoun  32632  sgn0bi  32772  1smat1  33801  xrge0iifcnv  33930  signswch  34559  fmlafvel  35379  fz0n  35725  hfext  36178  unccur  37604  ntrneiel2  44082  ntrneik4w  44096  eliin2f  45105
  Copyright terms: Public domain W3C validator