| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4374 sbcne12 4378 sbcel2 4381 sbcbr 5162 csbxp 5738 smoord 8334 tfr2b 8364 axrepnd 10547 hasheq0 14328 m1exp1 16346 sadcadd 16428 stdbdxmet 24403 iccpnfcnv 24842 cxple2 26606 mirbtwnhl 28607 eupth2lem1 30147 ifnebib 32478 isoun 32625 sgn0bi 32765 1smat1 33794 xrge0iifcnv 33923 signswch 34552 fmlafvel 35372 fz0n 35718 hfext 36171 unccur 37597 ntrneiel2 44075 ntrneik4w 44089 eliin2f 45098 |
| Copyright terms: Public domain | W3C validator |