| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4364 sbcne12 4368 sbcel2 4371 sbcbr 5150 csbxp 5723 smoord 8295 tfr2b 8325 axrepnd 10507 hasheq0 14288 m1exp1 16305 sadcadd 16387 stdbdxmet 24419 iccpnfcnv 24858 cxple2 26622 mirbtwnhl 28643 eupth2lem1 30180 ifnebib 32511 isoun 32658 sgn0bi 32798 1smat1 33770 xrge0iifcnv 33899 signswch 34528 fmlafvel 35357 fz0n 35703 hfext 36156 unccur 37582 ntrneiel2 44059 ntrneik4w 44073 eliin2f 45082 |
| Copyright terms: Public domain | W3C validator |