| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version | ||
| Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
| 5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nii 378 norbi 886 pm5.54 1019 niabn 1022 sbccomlem 3823 ab0w 4332 csbprc 4362 ralf0 4467 ordsssuc2 6404 ndmovord 7543 ordsucelsuc 7761 brdomg 8891 suppeqfsuppbi 9288 funsnfsupp 9301 r1pw 9760 r1pwALT 9761 elixx3g 13279 elfz2 13435 bifald 38066 areaquad 43189 |
| Copyright terms: Public domain | W3C validator |