![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version |
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
5 | 2, 4 | 2falsed 375 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nii 377 norbi 884 pm5.54 1015 niabn 1018 ab0w 4371 csbprc 4403 ralf0 4508 ordsssuc2 6459 ndmovord 7608 ordsucelsuc 7823 brdomg 8979 brdomgOLD 8980 suppeqfsuppbi 9415 funsnfsupp 9428 r1pw 9881 r1pwALT 9882 elixx3g 13385 elfz2 13539 bifald 37801 areaquad 42918 |
Copyright terms: Public domain | W3C validator |