| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version | ||
| Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
| 5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nii 378 norbi 886 pm5.54 1019 niabn 1022 sbccomlem 3835 ab0w 4345 csbprc 4375 ralf0 4480 ordsssuc2 6428 ndmovord 7582 ordsucelsuc 7800 brdomg 8933 suppeqfsuppbi 9337 funsnfsupp 9350 r1pw 9805 r1pwALT 9806 elixx3g 13326 elfz2 13482 bifald 38088 areaquad 43212 |
| Copyright terms: Public domain | W3C validator |