| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version | ||
| Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
| 5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nii 378 norbi 886 pm5.54 1019 niabn 1022 sbccomlem 3832 ab0w 4342 csbprc 4372 ralf0 4477 ordsssuc2 6425 ndmovord 7579 ordsucelsuc 7797 brdomg 8930 suppeqfsuppbi 9330 funsnfsupp 9343 r1pw 9798 r1pwALT 9799 elixx3g 13319 elfz2 13475 bifald 38081 areaquad 43205 |
| Copyright terms: Public domain | W3C validator |