Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version |
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nii 379 norbi 883 pm5.54 1014 niabn 1017 ab0w 4304 csbprc 4337 ralf0 4441 ordsssuc2 6339 ndmovord 7440 ordsucelsuc 7644 brdomg 8703 suppeqfsuppbi 9072 funsnfsupp 9082 r1pw 9534 r1pwALT 9535 elixx3g 13021 elfz2 13175 bifald 36172 areaquad 40963 |
Copyright terms: Public domain | W3C validator |