| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version | ||
| Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
| 5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nii 378 norbi 886 pm5.54 1019 niabn 1022 sbccomlem 3820 ab0w 4329 csbprc 4359 ralf0 4464 ordsssuc2 6399 ndmovord 7536 ordsucelsuc 7752 brdomg 8881 suppeqfsuppbi 9263 funsnfsupp 9276 r1pw 9738 r1pwALT 9739 elixx3g 13258 elfz2 13414 bifald 38133 areaquad 43255 |
| Copyright terms: Public domain | W3C validator |