MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21ni Structured version   Visualization version   GIF version

Theorem pm5.21ni 378
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypotheses
Ref Expression
pm5.21ni.1 (𝜑𝜓)
pm5.21ni.2 (𝜒𝜓)
Assertion
Ref Expression
pm5.21ni 𝜓 → (𝜑𝜒))

Proof of Theorem pm5.21ni
StepHypRef Expression
1 pm5.21ni.1 . . 3 (𝜑𝜓)
21con3i 154 . 2 𝜓 → ¬ 𝜑)
3 pm5.21ni.2 . . 3 (𝜒𝜓)
43con3i 154 . 2 𝜓 → ¬ 𝜒)
52, 42falsed 376 1 𝜓 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.21nii  379  norbi  884  pm5.54  1015  niabn  1018  ab0w  4320  csbprc  4353  ralf0  4458  ordsssuc2  6392  ndmovord  7524  ordsucelsuc  7735  brdomg  8817  brdomgOLD  8818  suppeqfsuppbi  9240  funsnfsupp  9250  r1pw  9702  r1pwALT  9703  elixx3g  13193  elfz2  13347  bifald  36350  areaquad  41310
  Copyright terms: Public domain W3C validator