![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ni | Structured version Visualization version GIF version |
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
pm5.21ni | ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜒) |
5 | 2, 4 | 2falsed 376 | 1 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.21nii 378 norbi 885 pm5.54 1018 niabn 1021 sbccomlem 3891 ab0w 4401 csbprc 4432 ralf0 4537 ordsssuc2 6486 ndmovord 7640 ordsucelsuc 7858 brdomg 9016 brdomgOLD 9017 suppeqfsuppbi 9448 funsnfsupp 9461 r1pw 9914 r1pwALT 9915 elixx3g 13420 elfz2 13574 bifald 38047 areaquad 43177 |
Copyright terms: Public domain | W3C validator |