MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21ni Structured version   Visualization version   GIF version

Theorem pm5.21ni 377
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypotheses
Ref Expression
pm5.21ni.1 (𝜑𝜓)
pm5.21ni.2 (𝜒𝜓)
Assertion
Ref Expression
pm5.21ni 𝜓 → (𝜑𝜒))

Proof of Theorem pm5.21ni
StepHypRef Expression
1 pm5.21ni.1 . . 3 (𝜑𝜓)
21con3i 154 . 2 𝜓 → ¬ 𝜑)
3 pm5.21ni.2 . . 3 (𝜒𝜓)
43con3i 154 . 2 𝜓 → ¬ 𝜒)
52, 42falsed 376 1 𝜓 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.21nii  378  norbi  886  pm5.54  1019  niabn  1022  sbccomlem  3820  ab0w  4329  csbprc  4359  ralf0  4464  ordsssuc2  6399  ndmovord  7536  ordsucelsuc  7752  brdomg  8881  suppeqfsuppbi  9263  funsnfsupp  9276  r1pw  9738  r1pwALT  9739  elixx3g  13258  elfz2  13414  bifald  38133  areaquad  43255
  Copyright terms: Public domain W3C validator