MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21ni Structured version   Visualization version   GIF version

Theorem pm5.21ni 377
Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypotheses
Ref Expression
pm5.21ni.1 (𝜑𝜓)
pm5.21ni.2 (𝜒𝜓)
Assertion
Ref Expression
pm5.21ni 𝜓 → (𝜑𝜒))

Proof of Theorem pm5.21ni
StepHypRef Expression
1 pm5.21ni.1 . . 3 (𝜑𝜓)
21con3i 154 . 2 𝜓 → ¬ 𝜑)
3 pm5.21ni.2 . . 3 (𝜒𝜓)
43con3i 154 . 2 𝜓 → ¬ 𝜒)
52, 42falsed 376 1 𝜓 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  pm5.21nii  378  norbi  886  pm5.54  1019  niabn  1022  sbccomlem  3832  ab0w  4342  csbprc  4372  ralf0  4477  ordsssuc2  6425  ndmovord  7579  ordsucelsuc  7797  brdomg  8930  suppeqfsuppbi  9330  funsnfsupp  9343  r1pw  9798  r1pwALT  9799  elixx3g  13319  elfz2  13475  bifald  38081  areaquad  43205
  Copyright terms: Public domain W3C validator