|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3an4ancom24 | Structured version Visualization version GIF version | ||
| Description: Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) | 
| Ref | Expression | 
|---|---|
| 3an4ancom24 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | an4com24 47280 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜓))) | |
| 2 | 3an4anass 1105 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 3 | 3an4anass 1105 | . 2 ⊢ (((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜓))) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |