Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4an21 Structured version   Visualization version   GIF version

Theorem 4an21 44762
Description: Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.)
Assertion
Ref Expression
4an21 (((𝜑𝜓) ∧ 𝜒𝜃) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))

Proof of Theorem 4an21
StepHypRef Expression
1 3anass 1094 . 2 (((𝜑𝜓) ∧ 𝜒𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
2 ancom 461 . . . 4 ((𝜑𝜓) ↔ (𝜓𝜑))
32anbi1i 624 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜓𝜑) ∧ (𝜒𝜃)))
4 anass 469 . . . 4 (((𝜓𝜑) ∧ (𝜒𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ (𝜒𝜃))))
5 3anass 1094 . . . . . 6 ((𝜑𝜒𝜃) ↔ (𝜑 ∧ (𝜒𝜃)))
65bicomi 223 . . . . 5 ((𝜑 ∧ (𝜒𝜃)) ↔ (𝜑𝜒𝜃))
76anbi2i 623 . . . 4 ((𝜓 ∧ (𝜑 ∧ (𝜒𝜃))) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))
84, 7bitri 274 . . 3 (((𝜓𝜑) ∧ (𝜒𝜃)) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))
93, 8bitri 274 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))
101, 9bitri 274 1 (((𝜑𝜓) ∧ 𝜒𝜃) ↔ (𝜓 ∧ (𝜑𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator