|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4an21 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.) | 
| Ref | Expression | 
|---|---|
| 4an21 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 1094 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | ancom 460 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃))) | 
| 4 | anass 468 | . . . 4 ⊢ (((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ (𝜒 ∧ 𝜃)))) | |
| 5 | 3anass 1094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜒 ∧ 𝜃))) | |
| 6 | 5 | bicomi 224 | . . . . 5 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃)) | 
| 7 | 6 | anbi2i 623 | . . . 4 ⊢ ((𝜓 ∧ (𝜑 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | 
| 8 | 4, 7 | bitri 275 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | 
| 9 | 3, 8 | bitri 275 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | 
| 10 | 1, 9 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |