Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4an21 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.) |
Ref | Expression |
---|---|
4an21 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1094 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | ancom 461 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃))) |
4 | anass 469 | . . . 4 ⊢ (((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ (𝜒 ∧ 𝜃)))) | |
5 | 3anass 1094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜒 ∧ 𝜃))) | |
6 | 5 | bicomi 223 | . . . . 5 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃)) |
7 | 6 | anbi2i 623 | . . . 4 ⊢ ((𝜓 ∧ (𝜑 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) |
8 | 4, 7 | bitri 274 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) |
9 | 3, 8 | bitri 274 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) |
10 | 1, 9 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |