MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an4anass Structured version   Visualization version   GIF version

Theorem 3an4anass 1103
Description: Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
Assertion
Ref Expression
3an4anass (((𝜑𝜓𝜒) ∧ 𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))

Proof of Theorem 3an4anass
StepHypRef Expression
1 df-3an 1087 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21anbi1i 623 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
3 anass 468 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
42, 3bitri 274 1 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oeeui  8395  isclwlkupgr  28047  clwlkclwwlk  28267  bnj557  32781  3an4ancom24  44648  isthincd2  46207
  Copyright terms: Public domain W3C validator