| Metamath
Proof Explorer Theorem List (p. 462 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | stowei 46101* | This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 46100: often times it will be better to use stoweid 46100 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝐽 ∈ Comp & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) & ⊢ 𝐹 ∈ 𝐶 & ⊢ 𝐸 ∈ ℝ+ ⇒ ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 | ||
| Theorem | wallispilem1 46102* | 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) | ||
| Theorem | wallispilem2 46103* | A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) ⇒ ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) | ||
| Theorem | wallispilem3 46104* | I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐼‘𝑁) ∈ ℝ+) | ||
| Theorem | wallispilem4 46105* | 𝐹 maps to explicit expression for the ratio of two consecutive values of 𝐼. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇒ ⊢ 𝐺 = 𝐻 | ||
| Theorem | wallispilem5 46106* | The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) ⇒ ⊢ 𝐻 ⇝ 1 | ||
| Theorem | wallispi 46107* | Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ⇒ ⊢ 𝑊 ⇝ (π / 2) | ||
| Theorem | wallispi2lem1 46108 | An intermediate step between the first version of the Wallis' formula for π and the second version of Wallis' formula. This second version will then be used to prove Stirling's approximation formula for the factorial. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑁) = ((1 / ((2 · 𝑁) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁))) | ||
| Theorem | wallispi2lem2 46109 | Two expressions are proven to be equal, and this is used to complete the proof of the second version of Wallis' formula for π . (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2))) | ||
| Theorem | wallispi2 46110 | An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝑉 ⇝ (π / 2) | ||
| Theorem | stirlinglem1 46111 | A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇒ ⊢ 𝐻 ⇝ (1 / 2) | ||
| Theorem | stirlinglem2 46112 | 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐴‘𝑁) ∈ ℝ+) | ||
| Theorem | stirlinglem3 46113 | Long but simple algebraic transformations are applied to show that 𝑉, the Wallis formula for π , can be expressed in terms of 𝐴, the Stirling's approximation formula for the factorial, up to a constant factor. This will allow (in a later theorem) to determine the right constant factor to be put into the 𝐴, in order to get the exact Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))) | ||
| Theorem | stirlinglem4 46114* | Algebraic manipulation of ((𝐵 n ) - ( B (𝑛 + 1))). It will be used in other theorems to show that 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽‘𝑁)) | ||
| Theorem | stirlinglem5 46115* | If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗))) & ⊢ 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗)) & ⊢ 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗))) & ⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))) & ⊢ 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → (abs‘𝑇) < 1) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇)))) | ||
| Theorem | stirlinglem6 46116* | A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁))) | ||
| Theorem | stirlinglem7 46117* | Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (𝐽‘𝑁)) | ||
| Theorem | stirlinglem8 46118 | If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐴 & ⊢ Ⅎ𝑛𝐷 & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ (𝜑 → 𝐴:ℕ⟶ℝ+) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ⇝ 𝐶) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (𝐶↑2)) | ||
| Theorem | stirlinglem9 46119* | ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) is expressed as a limit of a series. This result will be used both to prove that 𝐵 is decreasing and to prove that 𝐵 is bounded (below). It will follow that 𝐵 converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) | ||
| Theorem | stirlinglem10 46120* | A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) | ||
| Theorem | stirlinglem11 46121* | 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵‘𝑁)) | ||
| Theorem | stirlinglem12 46122* | The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑁)) | ||
| Theorem | stirlinglem13 46123* | 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) ⇒ ⊢ ∃𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 | ||
| Theorem | stirlinglem14 46124* | The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) ⇒ ⊢ ∃𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 | ||
| Theorem | stirlinglem15 46125* | The Stirling's formula is proven using a number of local definitions. The main theorem stirling 46126 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) | ||
| Theorem | stirling 46126 | Stirling's approximation formula for 𝑛 factorial. The proof follows two major steps: first it is proven that 𝑆 and 𝑛 factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for π it is proven that the unknown constant is the square root of π and then the exact Stirling's formula is established. This is Metamath 100 proof #90. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) ⇒ ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 | ||
| Theorem | stirlingr 46127 | Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 46126 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) ⇒ ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 | ||
| Theorem | dirkerval 46128* | The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) | ||
| Theorem | dirker2re 46129 | The Dirichlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) | ||
| Theorem | dirkerdenne0 46130 | The Dirichlet Kernel denominator is never 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) | ||
| Theorem | dirkerval2 46131* | The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))) | ||
| Theorem | dirkerre 46132* | The Dirichlet Kernel at any point evaluates to a real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) ∈ ℝ) | ||
| Theorem | dirkerper 46133* | the Dirichlet Kernel has period 2π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑇 = (2 · π) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑁)‘(𝑥 + 𝑇)) = ((𝐷‘𝑁)‘𝑥)) | ||
| Theorem | dirkerf 46134* | For any natural number 𝑁, the Dirichlet Kernel (𝐷‘𝑁) is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) | ||
| Theorem | dirkertrigeqlem1 46135* | Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0) | ||
| Theorem | dirkertrigeqlem2 46136* | Trigonomic equality lemma for the Dirichlet Kernel trigonomic equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (sin‘𝐴) ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2))))) | ||
| Theorem | dirkertrigeqlem3 46137* | Trigonometric equality lemma for the Dirichlet Kernel trigonometric equality. Here we handle the case for an angle that's an odd multiple of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ 𝐴 = (((2 · 𝐾) + 1) · π) ⇒ ⊢ (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2))))) | ||
| Theorem | dirkertrigeq 46138* | Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐹 = (𝐷‘𝑁) & ⊢ 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐻) | ||
| Theorem | dirkeritg 46139* | The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐹 = (𝐷‘𝑁) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ((𝐺‘𝐵) − (𝐺‘𝐴))) | ||
| Theorem | dirkercncflem1 46140* | If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐴 = (𝑌 − π) & ⊢ 𝐵 = (𝑌 + π) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))) | ||
| Theorem | dirkercncflem2 46141* | Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) & ⊢ 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0) & ⊢ 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) & ⊢ 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) & ⊢ 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) & ⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ⇒ ⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌)) | ||
| Theorem | dirkercncflem3 46142* | The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝐴 = (𝑌 − π) & ⊢ 𝐵 = (𝑌 + π) & ⊢ 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) & ⊢ 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) ⇒ ⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ ((𝐷‘𝑁) limℂ 𝑌)) | ||
| Theorem | dirkercncflem4 46143* | The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) ≠ 0) & ⊢ 𝐴 = (⌊‘(𝑌 / (2 · π))) & ⊢ 𝐵 = (𝐴 + 1) & ⊢ 𝐶 = (𝐴 · (2 · π)) & ⊢ 𝐸 = (𝐵 · (2 · π)) ⇒ ⊢ (𝜑 → (𝐷‘𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌)) | ||
| Theorem | dirkercncf 46144* | For any natural number 𝑁, the Dirichlet Kernel (𝐷‘𝑁) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) | ||
| Theorem | fourierdlem1 46145 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) | ||
| Theorem | fourierdlem2 46146* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | ||
| Theorem | fourierdlem3 46147* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | ||
| Theorem | fourierdlem4 46148* | 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) ⇒ ⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) | ||
| Theorem | fourierdlem5 46149* | 𝑆 is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑆 = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑋 + (1 / 2)) · 𝑥))) ⇒ ⊢ (𝑋 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem6 46150 | 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐼 < 𝐽) & ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) ⇒ ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) | ||
| Theorem | fourierdlem7 46151* | The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝐸‘𝑌) − 𝑌) ≤ ((𝐸‘𝑋) − 𝑋)) | ||
| Theorem | fourierdlem8 46152 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | fourierdlem9 46153* | 𝐻 is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ⇒ ⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem10 46154 | Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) | ||
| Theorem | fourierdlem11 46155* | If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) | ||
| Theorem | fourierdlem12 46156* | A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑄) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | ||
| Theorem | fourierdlem13 46157* | Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) | ||
| Theorem | fourierdlem14 46158* | Given the partition 𝑉, 𝑄 is the partition shifted to the left by 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) | ||
| Theorem | fourierdlem15 46159* | The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | ||
| Theorem | fourierdlem16 46160* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝐴‘𝑁) ∈ ℝ ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) | ||
| Theorem | fourierdlem17 46161* | The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) ⇒ ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) | ||
| Theorem | fourierdlem18 46162* | The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ⇒ ⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) | ||
| Theorem | fourierdlem19 46163* | If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝐷) & ⊢ (𝜑 → (𝐸‘𝑍) = (𝐸‘𝑊)) ⇒ ⊢ (𝜑 → ¬ 𝑊 < 𝑍) | ||
| Theorem | fourierdlem20 46164* | Every interval in the partition 𝑆 is included in an interval of the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ≤ (𝑄‘𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | ||
| Theorem | fourierdlem21 46165* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐵‘𝑁) ∈ ℝ ∧ (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) | ||
| Theorem | fourierdlem22 46166* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴‘𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵‘𝑛) ∈ ℝ))) | ||
| Theorem | fourierdlem23 46167* | If 𝐹 is continuous and 𝑋 is constant, then (𝐹‘(𝑋 + 𝑠)) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 + 𝑠) ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (𝐵–cn→ℂ)) | ||
| Theorem | fourierdlem24 46168 | A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0) | ||
| Theorem | fourierdlem25 46169* | If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) & ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝑄) & ⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < 𝐶}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1)))) | ||
| Theorem | fourierdlem26 46170* | Periodic image of a point 𝑌 that's in the period that begins with the point 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝐸‘𝑋) = 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,](𝑋 + 𝑇))) ⇒ ⊢ (𝜑 → (𝐸‘𝑌) = (𝐴 + (𝑌 − 𝑋))) | ||
| Theorem | fourierdlem27 46171 | A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | fourierdlem28 46172* | Derivative of (𝐹‘(𝑋 + 𝑠)). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) & ⊢ (𝜑 → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) ⇒ ⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) | ||
| Theorem | fourierdlem29 46173* | Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ⇒ ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) | ||
| Theorem | fourierdlem30 46174* | Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝑋 = (abs‘𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (abs‘𝐶) & ⊢ 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) ≤ 1) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐷) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸) | ||
| Theorem | fourierdlem31 46175* | If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑟𝜑 & ⊢ Ⅎ𝑖𝑉 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) & ⊢ 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} & ⊢ 𝑉 = (𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) & ⊢ 𝑁 = sup(ran 𝑉, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) | ||
| Theorem | fourierdlem32 46176 | Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) & ⊢ 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹‘𝐶)) & ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) | ||
| Theorem | fourierdlem33 46177 | Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) & ⊢ 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹‘𝐷)) & ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) | ||
| Theorem | fourierdlem34 46178* | A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → 𝑄:(0...𝑀)–1-1→ℝ) | ||
| Theorem | fourierdlem35 46179 | There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) & ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
| Theorem | fourierdlem36 46180* | 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) & ⊢ 𝑁 = ((♯‘𝐴) − 1) ⇒ ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) | ||
| Theorem | fourierdlem37 46181* | 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}))) | ||
| Theorem | fourierdlem38 46182* | The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) & ⊢ (𝜑 → ran 𝑄 = 𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | ||
| Theorem | fourierdlem39 46183* | Integration by parts of ∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ (𝜑 → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺‘𝑥)) ≤ 𝑦) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹‘𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹‘𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺‘𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥)) | ||
| Theorem | fourierdlem40 46184* | 𝐻 is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ)) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ⇒ ⊢ (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | ||
| Theorem | fourierdlem41 46185* | Lemma used to prove that every real is a limit point for the domain of the derivative of the periodic function to be approximated. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) | ||
| Theorem | fourierdlem42 46186* | The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ 𝑇 = (𝐶 − 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ 𝐷 = (abs ∘ − ) & ⊢ 𝐼 = ((𝐴 × 𝐴) ∖ I ) & ⊢ 𝑅 = ran (𝐷 ↾ 𝐼) & ⊢ 𝐸 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (𝐽 ↾t (𝑋[,]𝑌)) & ⊢ 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} & ⊢ (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))) ⇒ ⊢ (𝜑 → 𝐻 ∈ Fin) | ||
| Theorem | fourierdlem43 46187 | 𝐾 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ⇒ ⊢ 𝐾:(-π[,]π)⟶ℝ | ||
| Theorem | fourierdlem44 46188 | A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0) | ||
| Theorem | fourierdlem46 46189* | The function 𝐹 has a limit at the bounds of every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) & ⊢ (𝜑 → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) & ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) & ⊢ (𝜑 → ran 𝑄 = 𝐻) ⇒ ⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) | ||
| Theorem | fourierdlem47 46190* | For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐹) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ 𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ ℂ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝑋 = (abs‘𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (abs‘𝐶) & ⊢ 𝑍 = ∫𝐼(abs‘𝐹) d𝑥 & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℂ) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℂ) → 𝐷 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1) & ⊢ 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) | ||
| Theorem | fourierdlem48 46191* | The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) & ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅) | ||
| Theorem | fourierdlem49 46192* | The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅) | ||
| Theorem | fourierdlem50 46193* | Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) & ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) ⇒ ⊢ (𝜑 → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))))) | ||
| Theorem | fourierdlem51 46194* | 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝐸‘𝑋) ∈ 𝐶) & ⊢ 𝐷 = ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) & ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷)) & ⊢ 𝐻 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⇒ ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) | ||
| Theorem | fourierdlem52 46195* | d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴 ∧ 𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) ⇒ ⊢ (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆‘𝑁) = 𝐵)) | ||
| Theorem | fourierdlem53 46196* | The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐺 = (𝑠 ∈ 𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → (𝑋 + 𝑠) ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑠 ≠ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝑋 + 𝐷))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
| Theorem | fourierdlem54 46197* | Given a partition 𝑄 and an arbitrary interval [𝐶, 𝐷], a partition 𝑆 on [𝐶, 𝐷] is built such that it preserves any periodic function piecewise continuous on 𝑄 will be piecewise continuous on 𝑆, with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) ⇒ ⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) | ||
| Theorem | fourierdlem55 46198* | 𝑈 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) ⇒ ⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem56 46199* | Derivative of the 𝐾 function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0})) & ⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0) ⇒ ⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾‘𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))) | ||
| Theorem | fourierdlem57 46200* | The derivative of 𝑂. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ⇒ ⊢ ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |