HomeHome Metamath Proof Explorer
Theorem List (p. 462 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 46101-46200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremi0oii 46101 (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝐴 ≤ 1 → (0[,)𝐴) ∈ II)
 
Theoremio1ii 46102 (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
(0 ≤ 𝐴 → (𝐴(,]1) ∈ II)
 
20.42.9.6  Separated sets
 
Theoremsepnsepolem1 46103* Lemma for sepnsepo 46105. (Contributed by Zhi Wang, 1-Sep-2024.)
(∃𝑥𝐽𝑦𝐽 (𝜑𝜓𝜒) ↔ ∃𝑥𝐽 (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
 
Theoremsepnsepolem2 46104* Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 46105. Proof could be shortened by 1 step using ssdisjdr 46042. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
 
Theoremsepnsepo 46105* Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
 
Theoremsepdisj 46106 Separated sets are disjoint. Note that in general separatedness also requires 𝑇 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)       (𝜑 → (𝑆𝑇) = ∅)
 
Theoremseposep 46107* If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 46105. The relationship between separatedness and closure is also seen in isnrm 22394, isnrm2 22417, isnrm3 22418. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))       (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
 
Theoremsepcsepo 46108* If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 46105 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 46086, adantr 480, and rexlimiva 3209. (Contributed by Zhi Wang, 8-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))       (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
 
Theoremsepfsepc 46109* If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))       (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
 
Theoremseppsepf 46110 If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))       (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
 
Theoremseppcld 46111* If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))       (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
 
20.42.9.7  Separated spaces: T0, T1, T2 (Hausdorff) ...
 
Theoremisnrm4 46112* A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝐽)‘𝑐)∃𝑦 ∈ ((nei‘𝐽)‘𝑑)(𝑥𝑦) = ∅)))
 
Theoremdfnrm2 46113* A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 22376. (Contributed by Zhi Wang, 30-Aug-2024.)
Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
 
Theoremdfnrm3 46114* A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm 22376. (Contributed by Zhi Wang, 2-Sep-2024.)
Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝑗)‘𝑐)∃𝑦 ∈ ((nei‘𝑗)‘𝑑)(𝑥𝑦) = ∅)}
 
Theoremiscnrm3lem1 46115* Lemma for iscnrm3 46134. Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024.)
(𝐽 ∈ Top → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ((𝐽t 𝑥) ∈ Top ∧ 𝜑)))
 
Theoremiscnrm3lem2 46116* Lemma for iscnrm3 46134 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.)
(𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 → ((𝑤𝐷𝑣𝐸) → 𝜒)))    &   (𝜑 → (∀𝑤𝐷𝑣𝐸 𝜒 → ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))       (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑤𝐷𝑣𝐸 𝜒))
 
Theoremiscnrm3lem3 46117 Lemma for iscnrm3lem4 46118. (Contributed by Zhi Wang, 4-Sep-2024.)
(((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
 
Theoremiscnrm3lem4 46118 Lemma for iscnrm3lem5 46119 and iscnrm3r 46130. (Contributed by Zhi Wang, 4-Sep-2024.)
(𝜂 → (𝜓𝜁))    &   ((𝜑𝜒𝜃) → 𝜂)    &   ((𝜑𝜒𝜃) → (𝜁𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theoremiscnrm3lem5 46119* Lemma for iscnrm3l 46133. (Contributed by Zhi Wang, 3-Sep-2024.)
((𝑥 = 𝑆𝑦 = 𝑇) → (𝜑𝜓))    &   ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜒𝜃))    &   ((𝜏𝜂𝜁) → (𝑆𝑉𝑇𝑊))    &   ((𝜏𝜂𝜁) → ((𝜓𝜃) → 𝜎))       (𝜏 → (∀𝑥𝑉𝑦𝑊 (𝜑𝜒) → (𝜂 → (𝜁𝜎))))
 
Theoremiscnrm3lem6 46120* Lemma for iscnrm3lem7 46121. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝜑 ∧ (𝑥𝑉𝑦𝑊) ∧ 𝜓) → 𝜒)       (𝜑 → (∃𝑥𝑉𝑦𝑊 𝜓𝜒))
 
Theoremiscnrm3lem7 46121* Lemma for iscnrm3rlem8 46129 and iscnrm3llem2 46132 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝑧 = 𝑍 → (𝜒𝜃))    &   (𝑤 = 𝑊 → (𝜃𝜏))    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑍𝐶𝑊𝐷𝜏))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧𝐶𝑤𝐷 𝜒))
 
Theoremiscnrm3rlem1 46122 Lemma for iscnrm3rlem2 46123. The hypothesis could be generalized to (𝜑 → (𝑆𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝑆𝑋)       (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))
 
Theoremiscnrm3rlem2 46123 Lemma for iscnrm3rlem3 46124. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)       (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
 
Theoremiscnrm3rlem3 46124 Lemma for iscnrm3r 46130. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
 
Theoremiscnrm3rlem4 46125 Lemma for iscnrm3rlem8 46129. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑 → (𝑆𝑇) = ∅)    &   (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)       (𝜑𝑆𝑁)
 
Theoremiscnrm3rlem5 46126 Lemma for iscnrm3rlem6 46127. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)       (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
 
Theoremiscnrm3rlem6 46127 Lemma for iscnrm3rlem7 46128. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)    &   (𝜑𝑂 ⊆ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))       (𝜑 → (𝑂 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂𝐽))
 
Theoremiscnrm3rlem7 46128 Lemma for iscnrm3rlem8 46129. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)    &   (𝜑𝑂 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))       (𝜑𝑂𝐽)
 
Theoremiscnrm3rlem8 46129* Lemma for iscnrm3r 46130. Disjoint open neighborhoods in the subspace topology are disjoint open neighborhoods in the original topology given that the subspace is an open set in the original topology. Therefore, given any two sets separated in the original topology and separated by open neighborhoods in the subspace topology, they must be separated by open neighborhoods in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
 
Theoremiscnrm3r 46130* Lemma for iscnrm3 46134. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
 
Theoremiscnrm3llem1 46131 Lemma for iscnrm3l 46133. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶 ∈ 𝒫 𝐽𝐷 ∈ 𝒫 𝐽))
 
Theoremiscnrm3llem2 46132* Lemma for iscnrm3l 46133. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 42492.) (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
 
Theoremiscnrm3l 46133* Lemma for iscnrm3 46134. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
 
Theoremiscnrm3 46134* A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅))))
 
Theoremiscnrm3v 46135* A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.)
(𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅))))
 
Theoremiscnrm4 46136* A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛𝑚) = ∅)))
 
20.42.10  Preordered sets and directed sets using extensible structures
 
Theoremisprsd 46137* Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝐾𝑉)       (𝜑 → (𝐾 ∈ Proset ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
 
20.42.11  Posets and lattices using extensible structures
 
20.42.11.1  Posets
 
Theoremlubeldm2 46138* Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝑈 = (lub‘𝐾)    &   (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremglbeldm2 46139* Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐺 = (glb‘𝐾)    &   (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremlubeldm2d 46140* Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝑈 = (lub‘𝐾))    &   ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremglbeldm2d 46141* Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝐺 = (glb‘𝐾))    &   ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremlubsscl 46142 If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   (𝜑𝑇𝑆)    &   𝑈 = (lub‘𝐾)    &   (𝜑𝑆 ∈ dom 𝑈)    &   (𝜑 → (𝑈𝑆) ∈ 𝑇)       (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
 
Theoremglbsscl 46143 If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   (𝜑𝑇𝑆)    &   𝐺 = (glb‘𝐾)    &   (𝜑𝑆 ∈ dom 𝐺)    &   (𝜑 → (𝐺𝑆) ∈ 𝑇)       (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺𝑇) = (𝐺𝑆)))
 
Theoremlubprlem 46144 Lemma for lubprdm 46145 and lubpr 46146. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
 
Theoremlubprdm 46145 The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑𝑆 ∈ dom 𝑈)
 
Theoremlubpr 46146 The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑 → (𝑈𝑆) = 𝑌)
 
Theoremglbprlem 46147 Lemma for glbprdm 46148 and glbpr 46149. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺𝑆) = 𝑋))
 
Theoremglbprdm 46148 The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑𝑆 ∈ dom 𝐺)
 
Theoremglbpr 46149 The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑 → (𝐺𝑆) = 𝑋)
 
Theoremjoindm2 46150* The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝑈 = (lub‘𝐾)    &    = (join‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈))
 
Theoremjoindm3 46151* The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝑈 = (lub‘𝐾)    &    = (join‘𝐾)    &    = (le‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑥 𝑧𝑦 𝑧) ∧ ∀𝑤𝐵 ((𝑥 𝑤𝑦 𝑤) → 𝑧 𝑤))))
 
Theoremmeetdm2 46152* The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝐺 = (glb‘𝐾)    &    = (meet‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
 
Theoremmeetdm3 46153* The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝐺 = (glb‘𝐾)    &    = (meet‘𝐾)    &    = (le‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
 
Theoremposjidm 46154 Poset join is idempotent. latjidm 18095 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)       ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
 
Theoremposmidm 46155 Poset meet is idempotent. latmidm 18107 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)       ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
 
20.42.11.2  Lattices
 
Theoremtoslat 46156 A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝐾 ∈ Toset → 𝐾 ∈ Lat)
 
Theoremisclatd 46157* The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝑈 = (lub‘𝐾))    &   (𝜑𝐺 = (glb‘𝐾))    &   (𝜑𝐾 ∈ Poset)    &   ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)    &   ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)       (𝜑𝐾 ∈ CLat)
 
20.42.11.3  Subset order structures
 
Theoremintubeu 46158* Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.)
(𝐶𝐵 → ((𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) ↔ 𝐶 = {𝑥𝐵𝐴𝑥}))
 
Theoremunilbeu 46159* Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.)
(𝐶𝐵 → ((𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) ↔ 𝐶 = {𝑥𝐵𝑥𝐴}))
 
Theoremipolublem 46160* Lemma for ipolubdm 46161 and ipolub 46162. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &    = (le‘𝐼)       ((𝜑𝑋𝐹) → (( 𝑆𝑋 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑋𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑋 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧))))
 
Theoremipolubdm 46161* The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})       (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
 
Theoremipolub 46162* The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18047 is in quantified form. mrelatlub 18195 could potentially be shortened using this. See mrelatlubALT 46169. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})    &   (𝜑𝑇𝐹)       (𝜑 → (𝑈𝑆) = 𝑇)
 
Theoremipoglblem 46163* Lemma for ipoglbdm 46164 and ipoglb 46165. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &    = (le‘𝐼)       ((𝜑𝑋𝐹) → ((𝑋 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑋)) ↔ (∀𝑦𝑆 𝑋 𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋))))
 
Theoremipoglbdm 46164* The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})       (𝜑 → (𝑆 ∈ dom 𝐺𝑇𝐹))
 
Theoremipoglb 46165* The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18048 is in quantified form. mrelatglb 18193 could potentially be shortened using this. See mrelatglbALT 46170. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})    &   (𝜑𝑇𝐹)       (𝜑 → (𝐺𝑆) = 𝑇)
 
Theoremipolub0 46166 The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑 𝐹𝐹)    &   (𝜑𝐹𝑉)       (𝜑 → (𝑈‘∅) = 𝐹)
 
Theoremipolub00 46167 The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑 → ∅ ∈ 𝐹)       (𝜑 → (𝑈‘∅) = ∅)
 
Theoremipoglb0 46168 The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑 𝐹𝐹)       (𝜑 → (𝐺‘∅) = 𝐹)
 
TheoremmrelatlubALT 46169 Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐼 = (toInc‘𝐶)    &   𝐹 = (mrCls‘𝐶)    &   𝐿 = (lub‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))
 
TheoremmrelatglbALT 46170 Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐼 = (toInc‘𝐶)    &   𝐺 = (glb‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → (𝐺𝑈) = 𝑈)
 
Theoremmreclat 46171 A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐶)       (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
 
Theoremtopclat 46172 A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)       (𝐽 ∈ Top → 𝐼 ∈ CLat)
 
Theoremtoplatglb0 46173 The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   𝐺 = (glb‘𝐼)       (𝜑 → (𝐺‘∅) = 𝐽)
 
Theoremtoplatlub 46174 Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝑈 = (lub‘𝐼)       (𝜑 → (𝑈𝑆) = 𝑆)
 
Theoremtoplatglb 46175 Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝐺 = (glb‘𝐼)    &   (𝜑𝑆 ≠ ∅)       (𝜑 → (𝐺𝑆) = ((int‘𝐽)‘ 𝑆))
 
Theoremtoplatjoin 46176 Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (join‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremtoplatmeet 46177 Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (meet‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremtopdlat 46178 A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)       (𝐽 ∈ Top → 𝐼 ∈ DLat)
 
20.42.12  Categories
 
20.42.12.1  Categories
 
Theoremcatprslem 46179* Lemma for catprs 46180. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
 
Theoremcatprs 46180* A preorder can be extracted from a category. See catprs2 46181 for more details. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)       ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
 
Theoremcatprs2 46181* A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 46182 and catprsc2 46183 for constructions satisfying the hypothesis "catprs.1". See catprs 46180 for a more primitive version. See prsthinc 46223 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑 = (le‘𝐶))       (𝜑𝐶 ∈ Proset )
 
Theoremcatprsc 46182* A construction of the preorder induced by a category. See catprs2 46181 for details. See also catprsc2 46183 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})       (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
 
Theoremcatprsc2 46183* An alternate construction of the preorder induced by a category. See catprs2 46181 for details. See also catprsc 46182 for a different construction. The two constructions are different because df-cat 17294 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
(𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})       (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
 
Theoremendmndlem 46184 A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 46251 for converting a monoid to a category. Lemma for bj-endmnd 35416. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))    &   (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))       (𝜑𝑀 ∈ Mnd)
 
20.42.12.2  Monomorphisms and epimorphisms
 
Theoremidmon 46185 An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝑀 = (Mono‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
 
Theoremidepi 46186 An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝐸 = (Epi‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝐸𝑋))
 
20.42.12.3  Functors
 
Theoremfuncf2lem 46187* A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.)
(𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
 
20.42.13  Examples of categories
 
20.42.13.1  Thin categories
 
Syntaxcthinc 46188 Extend class notation with the class of thin categories.
class ThinCat
 
Definitiondf-thinc 46189* Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
 
Theoremisthinc 46190* The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
 
Theoremisthinc2 46191* A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
 
Theoremisthinc3 46192* A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔))
 
Theoremthincc 46193 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
 
Theoremthinccd 46194 A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)       (𝜑𝐶 ∈ Cat)
 
Theoremthincssc 46195 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat ⊆ Cat
 
Theoremisthincd2lem1 46196* Lemma for isthincd2 46207 and thincmo2 46197. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))       (𝜑𝐹 = 𝐺)
 
Theoremthincmo2 46197 Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)       (𝜑𝐹 = 𝐺)
 
Theoremthincmo 46198* There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
TheoremthincmoALT 46199* Alternate proof for thincmo 46198. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
Theoremthincmod 46200* At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >