HomeHome Metamath Proof Explorer
Theorem List (p. 462 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29280)
  Hilbert Space Explorer  Hilbert Space Explorer
(29281-30803)
  Users' Mathboxes  Users' Mathboxes
(30804-46521)
 

Theorem List for Metamath Proof Explorer - 46101-46200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremline2y 46101* Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}    &   𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}    &   𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
 
Theoremitsclc0lem1 46102 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.)
(((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) + (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ)
 
Theoremitsclc0lem2 46103 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 3-May-2023.)
(((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) − (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ)
 
Theoremitsclc0lem3 46104 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
 
Theoremitscnhlc0yqe 46105 Lemma for itsclc0 46117. Quadratic equation for the y-coordinate of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 
Theoremitschlc0yqe 46106 Lemma for itsclc0 46117. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 
Theoremitsclc0yqe 46107 Lemma for itsclc0 46117. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (𝐴 = 𝐵 = 0). (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 
Theoremitsclc0yqsollem1 46108 Lemma 1 for itsclc0yqsol 46110. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
 
Theoremitsclc0yqsollem2 46109 Lemma 2 for itsclc0yqsol 46110. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷)))
 
Theoremitsclc0yqsol 46110 Lemma for itsclc0 46117. Solutions of the quadratic equations for the y-coordinate of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 7-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))
 
Theoremitscnhlc0xyqsol 46111 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 8-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitschlc0xyqsol1 46112 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵)))))
 
Theoremitschlc0xyqsol 46113 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 8-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitsclc0xyqsol 46114 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitsclc0xyqsolr 46115 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) → (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)))
 
Theoremitsclc0xyqsolb 46116 Lemma for itsclc0 46117. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitsclc0 46117* The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitsclc0b 46118* The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
 
Theoremitsclinecirc0 46119 The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑌‘2) − (𝑍‘2))    &   𝐵 = ((𝑍‘1) − (𝑌‘1))    &   𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))       (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
 
Theoremitsclinecirc0b 46120 The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
 
Theoremitsclinecirc0in 46121 The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
 
Theoremitsclquadb 46122* Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 
Theoremitsclquadeu 46123* Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
 
Theorem2itscplem1 46124 Lemma 1 for 2itscp 46127. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)       (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))
 
Theorem2itscplem2 46125 Lemma 2 for 2itscp 46127. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))       (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2))))
 
Theorem2itscplem3 46126 Lemma D for 2itscp 46127. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   𝑄 = ((𝐸↑2) + (𝐷↑2))    &   𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))
 
Theorem2itscp 46127 A condition for a quadratic equation with real coefficients (for the intersection points of a line with a circle) to have (exactly) two different real solutions. (Contributed by AV, 5-Mar-2023.) (Revised by AV, 16-May-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))    &   (𝜑 → (𝐵𝑌𝐴𝑋))    &   𝑄 = ((𝐸↑2) + (𝐷↑2))    &   𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (𝜑 → 0 < 𝑆)
 
Theoremitscnhlinecirc02plem1 46128 Lemma 1 for itscnhlinecirc02p 46131. (Contributed by AV, 6-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))    &   (𝜑𝐵𝑌)       (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
 
Theoremitscnhlinecirc02plem2 46129 Lemma 2 for itscnhlinecirc02p 46131. (Contributed by AV, 10-Mar-2023.)
𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
 
Theoremitscnhlinecirc02plem3 46130 Lemma 3 for itscnhlinecirc02p 46131. (Contributed by AV, 10-Mar-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
 
Theoremitscnhlinecirc02p 46131* Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)    &   𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}       (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))
 
Theoreminlinecirc02plem 46132* Lemma for inlinecirc02p 46133. (Contributed by AV, 7-May-2023.) (Revised by AV, 15-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
 
Theoreminlinecirc02p 46133 Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
 
Theoreminlinecirc02preu 46134* Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑m 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))))
 
20.42  Mathbox for Zhi Wang
 
20.42.1  Propositional calculus
 
Theorempm4.71da 46135 Deduction converting a biconditional to a biconditional with conjunction. Variant of pm4.71d 562. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 ↔ (𝜓𝜒)))
 
Theoremlogic1 46136 Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → (𝜃𝜏)))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
 
Theoremlogic1a 46137 Variant of logic1 46136. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑 → (𝜓𝜒))    &   ((𝜑𝜓) → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
 
Theoremlogic2 46138 Variant of logic1 46136. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
 
Theorempm5.32dav 46139 Distribution of implication over biconditional (deduction form). Variant of pm5.32da 579. (Contributed by Zhi Wang, 30-Aug-2024.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
 
Theorempm5.32dra 46140 Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024.)
(𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))       ((𝜑𝜓) → (𝜒𝜃))
 
Theoremexp12bd 46141 The import-export theorem (impexp 451) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024.)
(𝜑 → (((𝜓𝜒) → 𝜃) ↔ ((𝜏𝜂) → 𝜁)))       (𝜑 → ((𝜓 → (𝜒𝜃)) ↔ (𝜏 → (𝜂𝜁))))
 
Theoremmpbiran3d 46142 Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))    &   ((𝜑𝜒) → 𝜃)       (𝜑 → (𝜓𝜒))
 
Theoremmpbiran4d 46143 Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))    &   ((𝜑𝜃) → 𝜒)       (𝜑 → (𝜓𝜃))
 
20.42.2  Predicate calculus with equality
 
20.42.2.1  Axiom scheme ax-5 (Distinctness)
 
Theoremdtrucor3 46144* An example of how ax-5 1913 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5359 in the ZF set theory. axc16nf 2255 and euae 2661 demonstrate that the violation of dtru 5359 leads to a model with only one object assuming its existence (ax-6 1971). The conclusion is also provable in the empty model ( see emptyal 1911). See also nf5 2279 and nf5i 2142 for the relation between unconditional ax-5 1913 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.)
¬ ∀𝑥 𝑥 = 𝑦    &   (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)       𝑥 𝑥 = 𝑦
 
20.42.3  ZF Set Theory - start with the Axiom of Extensionality
 
20.42.3.1  Restricted quantification
 
Theoremralbidb 46145* Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc 46146 for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝜑 → (𝑥𝐴 ↔ (𝑥𝐵𝜓)))    &   ((𝜑𝑥𝐴) → (𝜒𝜃))       (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 (𝜓𝜃)))
 
Theoremralbidc 46146* Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb 46145. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑 → (𝑥𝐴 ↔ (𝑥𝐵𝜓)))    &   (𝜑 → ((𝑥𝐴 ∧ (𝑥𝐵𝜓)) → (𝜒𝜃)))       (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 (𝜓𝜃)))
 
Theoremr19.41dv 46147* A complex deduction form of r19.41v 3276. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝜑 → ∃𝑥𝐴 𝜓)       ((𝜑𝜒) → ∃𝑥𝐴 (𝜓𝜒))
 
Theoremrspceb2dv 46148* Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024.)
((𝜑𝑥𝐵) → (𝜓𝜒))    &   ((𝜑𝜒) → 𝐴𝐵)    &   ((𝜑𝜒) → 𝜃)    &   (𝑥 = 𝐴 → (𝜓𝜃))       (𝜑 → (∃𝑥𝐵 𝜓𝜒))
 
Theoremrextru 46149 Two ways of expressing "at least one" element. (Contributed by Zhi Wang, 23-Sep-2024.)
(∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
 
Theoremrmotru 46150 Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by BJ, 23-Sep-2024.)
(∃*𝑥 𝑥𝐴 ↔ ∃*𝑥𝐴 ⊤)
 
Theoremreutru 46151 Two ways of expressing "exactly one" element. (Contributed by Zhi Wang, 23-Sep-2024.)
(∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)
 
TheoremreutruALT 46152 Alternate proof for reutru 46151. (Contributed by Zhi Wang, 23-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)
 
20.42.3.2  The empty set
 
Theoremssdisjd 46153 Subset preserves disjointness. Deduction form of ssdisj 4393. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐴𝐵)    &   (𝜑 → (𝐵𝐶) = ∅)       (𝜑 → (𝐴𝐶) = ∅)
 
Theoremssdisjdr 46154 Subset preserves disjointness. Deduction form of ssdisj 4393. Alternatively this could be proved with ineqcom 4136 in tandem with ssdisjd 46153. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐴𝐵)    &   (𝜑 → (𝐶𝐵) = ∅)       (𝜑 → (𝐶𝐴) = ∅)
 
Theoremdisjdifb 46155 Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
 
Theorempredisj 46156 Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → Fun 𝐹)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑆 ⊆ (𝐹𝐴))    &   (𝜑𝑇 ⊆ (𝐹𝐵))       (𝜑 → (𝑆𝑇) = ∅)
 
20.42.3.3  Unordered and ordered pairs
 
Theoremvsn 46157 The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
{V} = ∅
 
Theoremmosn 46158* "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
 
Theoremmo0 46159* "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
 
Theoremmosssn 46160* "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.)
(𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
 
Theoremmo0sn 46161* Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024.)
(∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
 
Theoremmosssn2 46162* Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.)
(∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
 
20.42.3.4  The union of a class
 
Theoremunilbss 46163* Superclass of the greatest lower bound. A dual statement of ssintub 4897. (Contributed by Zhi Wang, 29-Sep-2024.)
{𝑥𝐵𝑥𝐴} ⊆ 𝐴
 
20.42.4  ZF Set Theory - add the Axiom of Replacement
 
20.42.4.1  Theorems requiring subset and intersection existence
 
Theoreminpw 46164* Two ways of expressing a collection of subsets as seen in df-ntr 22171, unimax 4877, and others (Contributed by Zhi Wang, 27-Sep-2024.)
(𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
 
20.42.5  ZF Set Theory - add the Axiom of Power Sets
 
20.42.5.1  Functions
 
Theoremmof0 46165 There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
∃*𝑓 𝑓:𝐴⟶∅
 
Theoremmof02 46166* A variant of mof0 46165. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
 
Theoremmof0ALT 46167* Alternate proof for mof0 46165 with stronger requirements on distinct variables. Uses mo4 2566. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
∃*𝑓 𝑓:𝐴⟶∅
 
Theoremeufsnlem 46168* There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 46169 assuming ax-rep 5209, or eufsn2 46170 assuming ax-pow 5288 and ax-un 7588. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝜑𝐵𝑊)    &   (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉)       (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
 
Theoremeufsn 46169* There is exactly one function into a singleton, assuming ax-rep 5209. See eufsn2 46170 for different axiom requirements. If existence is not needed, use mofsn 46171 or mofsn2 46172 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝜑𝐵𝑊)    &   (𝜑𝐴𝑉)       (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
 
Theoremeufsn2 46170* There is exactly one function into a singleton, assuming ax-pow 5288 and ax-un 7588. Variant of eufsn 46169. If existence is not needed, use mofsn 46171 or mofsn2 46172 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝜑𝐵𝑊)    &   (𝜑𝐴𝑉)       (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
 
Theoremmofsn 46171* There is at most one function into a singleton, with fewer axioms than eufsn 46169 and eufsn2 46170. See also mofsn2 46172. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝐵𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵})
 
Theoremmofsn2 46172* There is at most one function into a singleton. An unconditional variant of mofsn 46171, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.)
(𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
 
Theoremmofsssn 46173* There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
 
Theoremmofmo 46174* There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.)
(∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
 
Theoremmofeu 46175* The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐺 = (𝐴 × 𝐵)    &   (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))    &   (𝜑 → ∃*𝑥 𝑥𝐵)       (𝜑 → (𝐹:𝐴𝐵𝐹 = 𝐺))
 
Theoremelfvne0 46176 If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.)
(𝐴 ∈ (𝐹𝐵) → 𝐹 ≠ ∅)
 
Theoremfdomne0 46177 A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.)
((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))
 
Theoremf1sn2g 46178 A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)
 
Theoremf102g 46179 A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
 
Theoremf1mo 46180* A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
((∃*𝑥 𝑥𝐴𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
 
Theoremf002 46181 A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
 
Theoremmap0cor 46182* A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
 
20.42.5.2  Operations
 
Theoremfvconstr 46183 Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐹 = (𝑅 × {𝑌}))    &   (𝜑𝑌𝑉)    &   (𝜑𝑌 ≠ ∅)       (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌))
 
Theoremfvconstrn0 46184 Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐹 = (𝑅 × {𝑌}))    &   (𝜑𝑌𝑉)    &   (𝜑𝑌 ≠ ∅)       (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅))
 
Theoremfvconstr2 46185 Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐹 = (𝑅 × {𝑌}))    &   (𝜑𝑋 ∈ (𝐴𝐹𝐵))       (𝜑𝐴𝑅𝐵)
 
20.42.6  ZF Set Theory - add the Axiom of Union
 
20.42.6.1  Equinumerosity
 
Theoremfvconst0ci 46186 A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
𝐵 ∈ V    &   𝑌 = ((𝐴 × {𝐵})‘𝑋)       (𝑌 = ∅ ∨ 𝑌 = 𝐵)
 
Theoremfvconstdomi 46187 A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
𝐵 ∈ V       ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵
 
Theoremf1omo 46188* There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 46187 assuming ax-un 7588 (see f1omoALT 46189). (Contributed by Zhi Wang, 19-Sep-2024.)
(𝜑𝐹 = (𝐴 × {1o}))       (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
 
Theoremf1omoALT 46189* There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 46188 without assuming ax-un 7588. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐹 = (𝐴 × {1o}))       (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
 
20.42.7  Order sets
 
20.42.7.1  Real number intervals
 
Theoremiccin 46190 Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)[,]if(𝐵𝐷, 𝐵, 𝐷)))
 
Theoremiccdisj2 46191 If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
 
Theoremiccdisj 46192 If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
 
20.42.8  Moore spaces
 
Theoremmreuniss 46193 The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
 
20.42.9  Topology

Additional contents for topology.

 
20.42.9.1  Closure and interior
 
Theoremclduni 46194 The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
(𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
 
Theoremopncldeqv 46195* Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
 
Theoremopndisj 46196 Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝑍 = ( 𝐽𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌𝐽 ∧ (𝑋𝑌) = ∅)))
 
Theoremclddisj 46197 Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 46196 with elssuni 4871 replaced by the combination of cldss 22180 and eqid 2738. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
 
20.42.9.2  Neighborhoods
 
Theoremneircl 46198 Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.)
(𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top)
 
Theoremopnneilem 46199* Lemma factoring out common proof steps of opnneil 46203 and opnneirv 46201. (Contributed by Zhi Wang, 31-Aug-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
 
Theoremopnneir 46200* If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46521
  Copyright terms: Public domain < Previous  Next >