![]() |
Metamath
Proof Explorer Theorem List (p. 462 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30605) |
![]() (30606-32128) |
![]() (32129-48016) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abciffcbatnabciffncbai 46101 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ⇒ ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
Theorem | nabctnabc 46102 | not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jabtaib 46103 | For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | onenotinotbothi 46104 | From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
Theorem | twonotinotbothi 46105 | From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
⊢ ¬ (𝜑 → 𝜓) & ⊢ ¬ (𝜒 → 𝜃) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
Theorem | clifte 46106 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ (𝜑 ∧ ¬ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
Theorem | cliftet 46107 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ (𝜑 ∧ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
Theorem | clifteta 46108 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
Theorem | cliftetb 46109 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
Theorem | confun 46110 | Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ 𝜑 & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜃 ↔ 𝜑)) | ||
Theorem | confun2 46111 | Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → ¬ (𝜓 → (𝜓 ∧ ¬ 𝜓))) & ⊢ ((𝜓 → 𝜑) → ((𝜓 → 𝜑) → 𝜑)) ⇒ ⊢ (𝜓 → (¬ (𝜓 → (𝜓 ∧ ¬ 𝜓)) ↔ (𝜓 → 𝜑))) | ||
Theorem | confun3 46112 | Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ (𝜑 ↔ (𝜒 → 𝜓)) & ⊢ (𝜃 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ ((𝜒 → 𝜓) → ((𝜒 → 𝜓) → 𝜓)) ⇒ ⊢ (𝜒 → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ (𝜒 → 𝜓))) | ||
Theorem | confun4 46113 | An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜓 → 𝜏)) | ||
Theorem | confun5 46114 | An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜂 ↔ 𝜏)) | ||
Theorem | plcofph 46115 | Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
Theorem | pldofph 46116 | Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 ⇒ ⊢ 𝜏 | ||
Theorem | plvcofph 46117 | Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 ⇒ ⊢ 𝜂 | ||
Theorem | plvcofphax 46118 | Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 & ⊢ (𝜁 ↔ ¬ (𝜓 ∧ ¬ 𝜏)) ⇒ ⊢ 𝜁 | ||
Theorem | plvofpos 46119 | rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
⊢ (𝜒 ↔ (¬ 𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜃 ↔ (¬ 𝜑 ∧ 𝜓)) & ⊢ (𝜏 ↔ (𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) & ⊢ (𝜁 ↔ (((((¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜃)) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜒 → 𝜂))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜂))) ∧ ¬ ((𝜇 → 𝜏) ∧ (𝜇 → 𝜂)))) & ⊢ (𝜎 ↔ (((𝜇 → 𝜒) ∨ (𝜇 → 𝜃)) ∨ ((𝜇 → 𝜏) ∨ (𝜇 → 𝜂)))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) & ⊢ 𝜁 & ⊢ 𝜎 ⇒ ⊢ 𝜌 | ||
Theorem | mdandyv0 46120 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv1 46121 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv2 46122 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv3 46123 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv4 46124 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv5 46125 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv6 46126 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv7 46127 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
Theorem | mdandyv8 46128 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv9 46129 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv10 46130 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv11 46131 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv12 46132 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv13 46133 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv14 46134 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyv15 46135 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
Theorem | mdandyvr0 46136 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr1 46137 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr2 46138 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr3 46139 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr4 46140 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr5 46141 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr6 46142 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr7 46143 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
Theorem | mdandyvr8 46144 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr9 46145 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr10 46146 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr11 46147 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr12 46148 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr13 46149 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr14 46150 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvr15 46151 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
Theorem | mdandyvrx0 46152 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx1 46153 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx2 46154 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx3 46155 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx4 46156 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx5 46157 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx6 46158 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx7 46159 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
Theorem | mdandyvrx8 46160 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx9 46161 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx10 46162 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx11 46163 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx12 46164 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx13 46165 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx14 46166 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | mdandyvrx15 46167 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
Theorem | H15NH16TH15IH16 46168 | Given 15 hypotheses and a 16th hypothesis, there exists a proof the 15 imply the 16th. (Contributed by Jarvin Udandy, 8-Sep-2016.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ 𝜂 & ⊢ 𝜁 & ⊢ 𝜎 & ⊢ 𝜌 & ⊢ 𝜇 & ⊢ 𝜆 & ⊢ 𝜅 & ⊢ jph & ⊢ jps & ⊢ jch & ⊢ jth ⇒ ⊢ (((((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ jph) ∧ jps) ∧ jch) → jth) | ||
Theorem | dandysum2p2e4 46169 |
CONTRADICTION PROVED AT 1 + 1 = 2 .
Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2', 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) & ⊢ (𝜁 ↔ ⊤) & ⊢ (𝜎 ↔ ⊥) & ⊢ (𝜌 ↔ ⊥) & ⊢ (𝜇 ↔ ⊥) & ⊢ (𝜆 ↔ ⊥) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
Theorem | mdandysum2p2e4 46170 |
CONTRADICTION PROVED AT 1 + 1 = 2 . Luckily Mario Carneiro did a
successful version of his own.
See Mario's Relevant Work: Half adder and full adder in propositional calculus. Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2'. 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F. ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. In mdandysum2p2e4, one might imagine what jth or jta could be then do the math with their truths. Also limited to the restriction jth, jta are having opposite truths equivalent to the stated truth constants. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
⊢ (jth ↔ ⊥) & ⊢ (jta ↔ ⊤) & ⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ jth) & ⊢ (𝜏 ↔ jth) & ⊢ (𝜂 ↔ jta) & ⊢ (𝜁 ↔ jta) & ⊢ (𝜎 ↔ jth) & ⊢ (𝜌 ↔ jth) & ⊢ (𝜇 ↔ jth) & ⊢ (𝜆 ↔ jth) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
Theorem | adh-jarrsc 46171 | Replacement of a nested antecedent with an outer antecedent. Commuted simplificated form of elimination of a nested antecedent. Also holds intuitionistically. Polish prefix notation: CCCpqrCsCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → (𝜓 → 𝜒))) | ||
Minimal implicational calculus, or intuitionistic implicational calculus, or positive implicational calculus, is the implicational fragment of minimal calculus (which is also the implicational fragment of intuitionistic calculus and of positive calculus). It is sometimes called "C-pure intuitionism" since the letter C is used to denote implication in Polish prefix notation. It can be axiomatized by the inference rule of modus ponens ax-mp 5 together with the axioms { ax-1 6, ax-2 7 } (sometimes written KS), or with { imim1 83, ax-1 6, pm2.43 56 } (written B'KW), or with { imim2 58, pm2.04 90, ax-1 6, pm2.43 56 } (written BCKW), or with the single axiom adh-minim 46172, or with the single axiom adh-minimp 46184. This section proves first adh-minim 46172 from { ax-1 6, ax-2 7 }, followed by the converse, due to Ivo Thomas; and then it proves adh-minimp 46184 from { ax-1 6, ax-2 7 }, also followed by the converse, also due to Ivo Thomas. Sources for this section are * Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170; * Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477, in which the derivations of { ax-1 6, ax-2 7 } from adh-minim 46172 are shortened (compared to Meredith's derivations in the aforementioned paper); * Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187; and * the webpage https://web.ics.purdue.edu/~dulrich/C-pure-intuitionism-page.htm 46172 on Dolph Edward "Ted" Ulrich's website, where these and other single axioms for the minimal implicational calculus are listed. This entire section also holds intuitionistically. Users of the Polish prefix notation also often use a compact notation for proof derivations known as the D-notation where "D" stands for "condensed Detachment". For instance, "D21" means detaching ax-1 6 from ax-2 7, that is, using modus ponens ax-mp 5 with ax-1 6 as minor premise and ax-2 7 as major premise. When the numbered lemmas surpass 10, dots are added between the numbers. D-strings are accepted by the grammar Dundotted := digit | "D" Dundotted Dundotted ; Ddotted := digit + | "D" Ddotted "." Ddotted ; Dstr := Dundotted | Ddotted . (Contributed by BJ, 11-Apr-2021.) (Revised by ADH, 10-Nov-2023.) | ||
Theorem | adh-minim 46172 | A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. This is the axiom from Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. A two-line review by Alonzo Church of this article can be found in The Journal of Symbolic Logic, volume 19, issue 2, June 1954, page 144, https://doi.org/10.2307/2268914. Known as "HI-1" on Dolph Edward "Ted" Ulrich's web page. In the next 6 lemmas and 3 theorems, ax-1 6 and ax-2 7 are derived from this single axiom in 16 detachments (instances of ax-mp 5) in total. Polish prefix notation: CCCpqrCsCCqCrtCqt . (Contributed by ADH, 10-Nov-2023.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
Theorem | adh-minim-ax1-ax2-lem1 46173 | First lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜂)) → (𝜓 → 𝜂))) | ||
Theorem | adh-minim-ax1-ax2-lem2 46174 | Second lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → ((𝜓 → ((𝜒 → (𝜑 → 𝜃)) → (𝜒 → 𝜃))) → 𝜏)) → (𝜑 → 𝜏)) | ||
Theorem | adh-minim-ax1-ax2-lem3 46175 | Third lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜃 → (𝜑 → 𝜒)))) | ||
Theorem | adh-minim-ax1-ax2-lem4 46176 | Fourth lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃))) | ||
Theorem | adh-minim-ax1 46177 | Derivation of ax-1 6 from adh-minim 46172 and ax-mp 5. Carew Arthur Meredith derived ax-1 6 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Theorem | adh-minim-ax2-lem5 46178 | Fifth lemma for the derivation of ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CpCCCqrsCCrCstCrt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏)))) | ||
Theorem | adh-minim-ax2-lem6 46179 | Sixth lemma for the derivation of ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CCpCCCCqrsCCrCstCrtuCpu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → ((((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏))) → 𝜂)) → (𝜑 → 𝜂)) | ||
Theorem | adh-minim-ax2c 46180 | Derivation of a commuted form of ax-2 7 from adh-minim 46172 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | adh-minim-ax2 46181 | Derivation of ax-2 7 from adh-minim 46172 and ax-mp 5. Carew Arthur Meredith derived ax-2 7 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | adh-minim-idALT 46182 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minim-ax1 46177, adh-minim-ax2 46181, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
Theorem | adh-minim-pm2.43 46183 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minim-ax1 46177, adh-minim-ax2 46181, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | adh-minimp 46184 | Another single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. Among single axioms of this length, it is the one with simplest antecedents (i.e., in the corresponding ordering of binary trees which first compares left subtrees, it is the first one). Known as "HI-2" on Dolph Edward "Ted" Ulrich's web page. In the next 4 lemmas and 5 theorems, ax-1 6 and ax-2 7 are derived from this other single axiom in 20 detachments (instances of ax-mp 5) in total. Polish prefix notation: CpCCqrCCCsqCrtCqt ; or CtCCpqCCCspCqrCpr in Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187, on page 180. (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) |
⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
Theorem | adh-minimp-jarr-imim1-ax2c-lem1 46185 | First lemma for the derivation of jarr 106, imim1 83, and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7, from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) | ||
Theorem | adh-minimp-jarr-lem2 46186 | Second lemma for the derivation of jarr 106, and indirectly ax-1 6, a commuted form of ax-2 7, and ax-2 7 proper, from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁)) | ||
Theorem | adh-minimp-jarr-ax2c-lem3 46187 | Third lemma for the derivation of jarr 106 and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7 proper , from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) → 𝜏) → 𝜏) | ||
Theorem | adh-minimp-sylsimp 46188 | Derivation of jarr 106 (also called "syll-simp") from minimp 1622 and ax-mp 5. Polish prefix notation: CCCpqrCqr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
Theorem | adh-minimp-ax1 46189 | Derivation of ax-1 6 from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CpCqp . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Theorem | adh-minimp-imim1 46190 | Derivation of imim1 83 ("left antimonotonicity of implication", theorem *2.06 of [WhiteheadRussell] p. 100) from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | adh-minimp-ax2c 46191 | Derivation of a commuted form of ax-2 7 from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | adh-minimp-ax2-lem4 46192 | Fourth lemma for the derivation of ax-2 7 from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) | ||
Theorem | adh-minimp-ax2 46193 | Derivation of ax-2 7 from adh-minimp 46184 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | adh-minimp-idALT 46194 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minimp-ax1 46189, adh-minimp-ax2 46193, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
Theorem | adh-minimp-pm2.43 46195 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 46189, adh-minimp-ax2 46193, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | n0nsn2el 46196* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
Theorem | eusnsn 46197* | There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
⊢ ∃!𝑥{𝑥} = {𝑦} | ||
Theorem | absnsb 46198* | If the class abstraction {𝑥 ∣ 𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) | ||
Theorem | euabsneu 46199* | Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4729 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
Theorem | elprneb 46200 | An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |