Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1-ax2-lem2 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1-ax2-lem2 44358
Description: Second lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 44356 and ax-mp 5. Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1-ax2-lem2 ((𝜑 → ((𝜓 → ((𝜒 → (𝜑𝜃)) → (𝜒𝜃))) → 𝜏)) → (𝜑𝜏))

Proof of Theorem adh-minim-ax1-ax2-lem2
StepHypRef Expression
1 adh-minim-ax1-ax2-lem1 44357 . 2 (𝜂 → ((𝜁 → ((𝜎 → ((𝜌 → (𝜁𝜇)) → (𝜌𝜇))) → 𝜆)) → (𝜁𝜆)))
2 adh-minim-ax1-ax2-lem1 44357 . 2 ((𝜂 → ((𝜁 → ((𝜎 → ((𝜌 → (𝜁𝜇)) → (𝜌𝜇))) → 𝜆)) → (𝜁𝜆))) → ((𝜑 → ((𝜓 → ((𝜒 → (𝜑𝜃)) → (𝜒𝜃))) → 𝜏)) → (𝜑𝜏)))
31, 2ax-mp 5 1 ((𝜑 → ((𝜓 → ((𝜒 → (𝜑𝜃)) → (𝜒𝜃))) → 𝜏)) → (𝜑𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax1-ax2-lem3  44359  adh-minim-ax1-ax2-lem4  44360
  Copyright terms: Public domain W3C validator