Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1-ax2-lem3 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1-ax2-lem3 44359
Description: Third lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 44356 and ax-mp 5. Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1-ax2-lem3 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜃 → (𝜑𝜒))))

Proof of Theorem adh-minim-ax1-ax2-lem3
StepHypRef Expression
1 adh-minim-ax1-ax2-lem1 44357 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜓 → ((𝜃 → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → (𝜃 → (𝜑𝜒)))) → (𝜓 → (𝜃 → (𝜑𝜒)))))
2 adh-minim-ax1-ax2-lem2 44358 . 2 (((𝜑 → (𝜓𝜒)) → ((𝜓 → ((𝜃 → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → (𝜃 → (𝜑𝜒)))) → (𝜓 → (𝜃 → (𝜑𝜒))))) → ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜃 → (𝜑𝜒)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜃 → (𝜑𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax1  44361  adh-minim-ax2  44365
  Copyright terms: Public domain W3C validator