Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1 46923
Description: Derivation of ax-1 6 from adh-minim 46918 and ax-mp 5. Carew Arthur Meredith derived ax-1 6 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1 (𝜑 → (𝜓𝜑))

Proof of Theorem adh-minim-ax1
StepHypRef Expression
1 adh-minim-ax1-ax2-lem1 46919 . 2 (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑)))
2 adh-minim-ax1-ax2-lem1 46919 . . . 4 ((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
3 adh-minim-ax1-ax2-lem3 46921 . . . . 5 (((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → (𝜓𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
4 adh-minim-ax1-ax2-lem4 46922 . . . . 5 ((((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → (𝜓𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → (((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))))
53, 4ax-mp 5 . . . 4 (((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
62, 5ax-mp 5 . . 3 ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))
7 adh-minim-ax1-ax2-lem4 46922 . . 3 (((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑))) → (𝜑 → (𝜓𝜑))))
86, 7ax-mp 5 . 2 ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑))) → (𝜑 → (𝜓𝜑)))
91, 8ax-mp 5 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax2-lem5  46924  adh-minim-idALT  46928  adh-minim-pm2.43  46929
  Copyright terms: Public domain W3C validator