Proof of Theorem adh-minim-ax1
Step | Hyp | Ref
| Expression |
1 | | adh-minim-ax1-ax2-lem1 44357 |
. 2
⊢ (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)) → (𝜓 → 𝜑))) |
2 | | adh-minim-ax1-ax2-lem1 44357 |
. . . 4
⊢ ((𝜓 → 𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓 → 𝜎)) → (𝜁 → 𝜎))) → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) |
3 | | adh-minim-ax1-ax2-lem3 44359 |
. . . . 5
⊢ (((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → (𝜓 → 𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓 → 𝜎)) → (𝜁 → 𝜎))) → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) |
4 | | adh-minim-ax1-ax2-lem4 44360 |
. . . . 5
⊢ ((((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → (𝜓 → 𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓 → 𝜎)) → (𝜁 → 𝜎))) → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) → (((𝜓 → 𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓 → 𝜎)) → (𝜁 → 𝜎))) → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) → ((𝜓 → 𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))))) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ (((𝜓 → 𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓 → 𝜎)) → (𝜁 → 𝜎))) → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) → ((𝜓 → 𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)))) |
6 | 2, 5 | ax-mp 5 |
. . 3
⊢ ((𝜓 → 𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))) |
7 | | adh-minim-ax1-ax2-lem4 44360 |
. . 3
⊢ (((𝜓 → 𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑))) → ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)) → (𝜓 → 𝜑))) → (𝜑 → (𝜓 → 𝜑)))) |
8 | 6, 7 | ax-mp 5 |
. 2
⊢ ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜑)) → (𝜓 → 𝜑))) → (𝜑 → (𝜓 → 𝜑))) |
9 | 1, 8 | ax-mp 5 |
1
⊢ (𝜑 → (𝜓 → 𝜑)) |