Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1 46991
Description: Derivation of ax-1 6 from adh-minim 46986 and ax-mp 5. Carew Arthur Meredith derived ax-1 6 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1 (𝜑 → (𝜓𝜑))

Proof of Theorem adh-minim-ax1
StepHypRef Expression
1 adh-minim-ax1-ax2-lem1 46987 . 2 (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑)))
2 adh-minim-ax1-ax2-lem1 46987 . . . 4 ((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
3 adh-minim-ax1-ax2-lem3 46989 . . . . 5 (((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → (𝜓𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
4 adh-minim-ax1-ax2-lem4 46990 . . . . 5 ((((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → (𝜓𝜑)) → (𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → (((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))))
53, 4ax-mp 5 . . . 4 (((𝜓𝜑) → ((𝜓 → ((𝜂 → ((𝜁 → (𝜓𝜎)) → (𝜁𝜎))) → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))) → ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))))
62, 5ax-mp 5 . . 3 ((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)))
7 adh-minim-ax1-ax2-lem4 46990 . . 3 (((𝜓𝜑) → (𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑))) → ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑))) → (𝜑 → (𝜓𝜑))))
86, 7ax-mp 5 . 2 ((𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜑)) → (𝜓𝜑))) → (𝜑 → (𝜓𝜑)))
91, 8ax-mp 5 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax2-lem5  46992  adh-minim-idALT  46996  adh-minim-pm2.43  46997
  Copyright terms: Public domain W3C validator