| Mathbox for Adhemar |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > adh-minimp-ax2-lem4 | Structured version Visualization version GIF version | ||
| Description: Fourth lemma for the derivation of ax-2 7 from adh-minimp 46959 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adh-minimp-ax2-lem4 | ⊢ (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adh-minimp-ax2c 46966 | . 2 ⊢ ((𝜓 → 𝜑) → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) | |
| 2 | adh-minimp-sylsimp 46963 | . 2 ⊢ (((𝜓 → 𝜑) → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) → (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: adh-minimp-ax2 46968 |
| Copyright terms: Public domain | W3C validator |