Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-ax2-lem4 Structured version   Visualization version   GIF version

Theorem adh-minimp-ax2-lem4 44376
Description: Fourth lemma for the derivation of ax-2 7 from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-ax2-lem4 (𝜑 → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒)))

Proof of Theorem adh-minimp-ax2-lem4
StepHypRef Expression
1 adh-minimp-ax2c 44375 . 2 ((𝜓𝜑) → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒)))
2 adh-minimp-sylsimp 44372 . 2 (((𝜓𝜑) → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒))) → (𝜑 → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒))))
31, 2ax-mp 5 1 (𝜑 → ((𝜓 → (𝜑𝜒)) → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-ax2  44377
  Copyright terms: Public domain W3C validator