Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-sylsimp Structured version   Visualization version   GIF version

Theorem adh-minimp-sylsimp 44372
Description: Derivation of jarr 106 (also called "syll-simp") from minimp 1629 and ax-mp 5. Polish prefix notation: CCCpqrCqr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-sylsimp (((𝜑𝜓) → 𝜒) → (𝜓𝜒))

Proof of Theorem adh-minimp-sylsimp
StepHypRef Expression
1 adh-minimp-jarr-ax2c-lem3 44371 . . 3 (((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒))
2 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . . 4 (((𝜑𝜓) → (((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒))) → (((((𝜑𝜓) → 𝜒) → (𝜑𝜓)) → ((((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒)) → (((𝜑𝜓) → 𝜒) → 𝜒))) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))))
3 adh-minimp-jarr-lem2 44370 . . . 4 ((((𝜑𝜓) → (((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒))) → (((((𝜑𝜓) → 𝜒) → (𝜑𝜓)) → ((((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒)) → (((𝜑𝜓) → 𝜒) → 𝜒))) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)))) → ((((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))))
42, 3ax-mp 5 . . 3 ((((((𝜑𝜓) → (𝜑𝜓)) → ((((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑𝜓)))) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → 𝜒)) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)))
51, 4ax-mp 5 . 2 ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))
6 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . 3 ((((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))) → (((𝜓 → ((𝜑𝜓) → 𝜒)) → (((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)) → (𝜓𝜒))) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))))
7 adh-minimp-jarr-lem2 44370 . . 3 (((((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒))) → (((𝜓 → ((𝜑𝜓) → 𝜒)) → (((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)) → (𝜓𝜒))) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))) → (((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))))
86, 7ax-mp 5 . 2 (((𝜑𝜓) → (((𝜑𝜓) → 𝜒) → 𝜒)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))
95, 8ax-mp 5 1 (((𝜑𝜓) → 𝜒) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-ax1  44373  adh-minimp-imim1  44374  adh-minimp-ax2c  44375  adh-minimp-ax2-lem4  44376
  Copyright terms: Public domain W3C validator