Proof of Theorem adh-minimp-ax2c
Step | Hyp | Ref
| Expression |
1 | | adh-minimp-jarr-ax2c-lem3 44371 |
. . . . . 6
⊢ ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → 𝜑) |
2 | | adh-minimp-jarr-imim1-ax2c-lem1 44369 |
. . . . . 6
⊢
(((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → 𝜑) → ((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑)) → (𝜑 → (𝜓 → 𝜒))) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)))) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢
((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑)) → (𝜑 → (𝜓 → 𝜒))) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒))) |
4 | | adh-minimp-sylsimp 44372 |
. . . . 5
⊢
(((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑)) → (𝜑 → (𝜓 → 𝜒))) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)))) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒))) |
6 | | adh-minimp-jarr-imim1-ax2c-lem1 44369 |
. . . 4
⊢ (((𝜑 → (𝜓 → 𝜒)) → ((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒))) → ((((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) → (((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) → (((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
8 | | adh-minimp-sylsimp 44372 |
. . 3
⊢
(((((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) → (((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) |
9 | 7, 8 | ax-mp 5 |
. 2
⊢
((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
10 | | adh-minimp-jarr-imim1-ax2c-lem1 44369 |
. . 3
⊢ ((𝜑 → 𝜓) → (((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
11 | | adh-minimp-imim1 44374 |
. . 3
⊢ (((𝜑 → 𝜓) → (((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → (((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))))) |
12 | 10, 11 | ax-mp 5 |
. 2
⊢
(((((((𝜃 → 𝜏) → (((𝜂 → 𝜃) → (𝜏 → 𝜁)) → (𝜃 → 𝜁))) → 𝜑) → (𝜓 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) |
13 | 9, 12 | ax-mp 5 |
1
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |