Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-ax2c Structured version   Visualization version   GIF version

Theorem adh-minimp-ax2c 44375
Description: Derivation of a commuted form of ax-2 7 from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-ax2c ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))

Proof of Theorem adh-minimp-ax2c
StepHypRef Expression
1 adh-minimp-jarr-ax2c-lem3 44371 . . . . . 6 ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → 𝜑)
2 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . . . . 6 (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → 𝜑) → ((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑)) → (𝜑 → (𝜓𝜒))) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒))))
31, 2ax-mp 5 . . . . 5 ((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑)) → (𝜑 → (𝜓𝜒))) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)))
4 adh-minimp-sylsimp 44372 . . . . 5 (((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑)) → (𝜑 → (𝜓𝜒))) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒))) → ((𝜑 → (𝜓𝜒)) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒))))
53, 4ax-mp 5 . . . 4 ((𝜑 → (𝜓𝜒)) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)))
6 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . . 4 (((𝜑 → (𝜓𝜒)) → ((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒))) → ((((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒))) → (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
75, 6ax-mp 5 . . 3 ((((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒))) → (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
8 adh-minimp-sylsimp 44372 . . 3 (((((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒))) → (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
97, 8ax-mp 5 . 2 ((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
10 adh-minimp-jarr-imim1-ax2c-lem1 44369 . . 3 ((𝜑𝜓) → (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒)))
11 adh-minimp-imim1 44374 . . 3 (((𝜑𝜓) → (((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒))) → (((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))))
1210, 11ax-mp 5 . 2 (((((((𝜃𝜏) → (((𝜂𝜃) → (𝜏𝜁)) → (𝜃𝜁))) → 𝜑) → (𝜓𝜒)) → (𝜑𝜒)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
139, 12ax-mp 5 1 ((𝜑𝜓) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-ax2-lem4  44376  adh-minimp-ax2  44377
  Copyright terms: Public domain W3C validator