Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-jarr-ax2c-lem3 Structured version   Visualization version   GIF version

Theorem adh-minimp-jarr-ax2c-lem3 44371
Description: Third lemma for the derivation of jarr 106 and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7 proper , from adh-minimp 44368 and ax-mp 5. Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-jarr-ax2c-lem3 ((((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))) → 𝜏) → 𝜏)

Proof of Theorem adh-minimp-jarr-ax2c-lem3
StepHypRef Expression
1 adh-minimp-jarr-lem2 44370 . 2 (((𝜂 → ((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇)))) → (((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))) → 𝜏)) → (((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇))) → 𝜏))
2 adh-minimp-jarr-lem2 44370 . 2 ((((𝜂 → ((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇)))) → (((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))) → 𝜏)) → (((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇))) → 𝜏)) → ((((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))) → 𝜏) → 𝜏))
31, 2ax-mp 5 1 ((((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))) → 𝜏) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-sylsimp  44372  adh-minimp-ax2c  44375
  Copyright terms: Public domain W3C validator