Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiffnbandciffatnotciffb | Structured version Visualization version GIF version |
Description: Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
Ref | Expression |
---|---|
aiffnbandciffatnotciffb.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
aiffnbandciffatnotciffb.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
aiffnbandciffatnotciffb | ⊢ ¬ (𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aiffnbandciffatnotciffb.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | aiffnbandciffatnotciffb.1 | . . 3 ⊢ (𝜑 ↔ ¬ 𝜓) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝜒 ↔ ¬ 𝜓) |
4 | xor3 384 | . 2 ⊢ (¬ (𝜒 ↔ 𝜓) ↔ (𝜒 ↔ ¬ 𝜓)) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ ¬ (𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: axorbciffatcxorb 44400 |
Copyright terms: Public domain | W3C validator |