Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiffnbandciffatnotciffb Structured version   Visualization version   GIF version

Theorem aiffnbandciffatnotciffb 43436
 Description: Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
aiffnbandciffatnotciffb.1 (𝜑 ↔ ¬ 𝜓)
aiffnbandciffatnotciffb.2 (𝜒𝜑)
Assertion
Ref Expression
aiffnbandciffatnotciffb ¬ (𝜒𝜓)

Proof of Theorem aiffnbandciffatnotciffb
StepHypRef Expression
1 aiffnbandciffatnotciffb.2 . . 3 (𝜒𝜑)
2 aiffnbandciffatnotciffb.1 . . 3 (𝜑 ↔ ¬ 𝜓)
31, 2bitri 278 . 2 (𝜒 ↔ ¬ 𝜓)
4 xor3 387 . 2 (¬ (𝜒𝜓) ↔ (𝜒 ↔ ¬ 𝜓))
53, 4mpbir 234 1 ¬ (𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210 This theorem is referenced by:  axorbciffatcxorb  43437
 Copyright terms: Public domain W3C validator