| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axorbciffatcxorb | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| axorbciffatcxorb.1 | ⊢ (𝜑 ⊻ 𝜓) |
| axorbciffatcxorb.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| axorbciffatcxorb | ⊢ (𝜒 ⊻ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axorbciffatcxorb.1 | . . . . 5 ⊢ (𝜑 ⊻ 𝜓) | |
| 2 | 1 | axorbtnotaiffb 46899 | . . . 4 ⊢ ¬ (𝜑 ↔ 𝜓) |
| 3 | xor3 382 | . . . 4 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 5 | axorbciffatcxorb.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 6 | 4, 5 | aiffnbandciffatnotciffb 46900 | . 2 ⊢ ¬ (𝜒 ↔ 𝜓) |
| 7 | df-xor 1512 | . 2 ⊢ ((𝜒 ⊻ 𝜓) ↔ ¬ (𝜒 ↔ 𝜓)) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ (𝜒 ⊻ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 |
| This theorem is referenced by: mdandyvrx0 46977 mdandyvrx1 46978 mdandyvrx2 46979 mdandyvrx3 46980 mdandyvrx4 46981 mdandyvrx5 46982 mdandyvrx6 46983 mdandyvrx7 46984 |
| Copyright terms: Public domain | W3C validator |