|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axorbciffatcxorb | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| axorbciffatcxorb.1 | ⊢ (𝜑 ⊻ 𝜓) | 
| axorbciffatcxorb.2 | ⊢ (𝜒 ↔ 𝜑) | 
| Ref | Expression | 
|---|---|
| axorbciffatcxorb | ⊢ (𝜒 ⊻ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axorbciffatcxorb.1 | . . . . 5 ⊢ (𝜑 ⊻ 𝜓) | |
| 2 | 1 | axorbtnotaiffb 46915 | . . . 4 ⊢ ¬ (𝜑 ↔ 𝜓) | 
| 3 | xor3 382 | . . . 4 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ (𝜑 ↔ ¬ 𝜓) | 
| 5 | axorbciffatcxorb.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 6 | 4, 5 | aiffnbandciffatnotciffb 46916 | . 2 ⊢ ¬ (𝜒 ↔ 𝜓) | 
| 7 | df-xor 1512 | . 2 ⊢ ((𝜒 ⊻ 𝜓) ↔ ¬ (𝜒 ↔ 𝜓)) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ (𝜒 ⊻ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 | 
| This theorem is referenced by: mdandyvrx0 46993 mdandyvrx1 46994 mdandyvrx2 46995 mdandyvrx3 46996 mdandyvrx4 46997 mdandyvrx5 46998 mdandyvrx6 46999 mdandyvrx7 47000 | 
| Copyright terms: Public domain | W3C validator |