Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axorbciffatcxorb Structured version   Visualization version   GIF version

Theorem axorbciffatcxorb 44400
Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
axorbciffatcxorb.1 (𝜑𝜓)
axorbciffatcxorb.2 (𝜒𝜑)
Assertion
Ref Expression
axorbciffatcxorb (𝜒𝜓)

Proof of Theorem axorbciffatcxorb
StepHypRef Expression
1 axorbciffatcxorb.1 . . . . 5 (𝜑𝜓)
21axorbtnotaiffb 44398 . . . 4 ¬ (𝜑𝜓)
3 xor3 384 . . . 4 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
42, 3mpbi 229 . . 3 (𝜑 ↔ ¬ 𝜓)
5 axorbciffatcxorb.2 . . 3 (𝜒𝜑)
64, 5aiffnbandciffatnotciffb 44399 . 2 ¬ (𝜒𝜓)
7 df-xor 1507 . 2 ((𝜒𝜓) ↔ ¬ (𝜒𝜓))
86, 7mpbir 230 1 (𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wxo 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1507
This theorem is referenced by:  mdandyvrx0  44476  mdandyvrx1  44477  mdandyvrx2  44478  mdandyvrx3  44479  mdandyvrx4  44480  mdandyvrx5  44481  mdandyvrx6  44482  mdandyvrx7  44483
  Copyright terms: Public domain W3C validator