MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor3 Structured version   Visualization version   GIF version

Theorem xor3 384
Description: Two ways to express "exclusive or". (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
xor3 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))

Proof of Theorem xor3
StepHypRef Expression
1 pm5.18 383 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
21con2bii 358 . 2 ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
32bicomi 223 1 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  nbbn  385  pm5.15  1012  nbi2  1015  xorass  1515  hadnot  1604  nabbib  3046  nmogtmnf  30023  nmopgtmnf  31121  limsucncmpi  35330  wl-3xorbi  36354  wl-3xornot  36362  oneptri  42006  oaordnrex  42045  omnord1ex  42054  oenord1ex  42065  aiffnbandciffatnotciffb  45614  axorbciffatcxorb  45615  abnotbtaxb  45625  afv2orxorb  45936  line2ylem  47437  line2xlem  47439
  Copyright terms: Public domain W3C validator