![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xor3 | Structured version Visualization version GIF version |
Description: Two ways to express "exclusive or". (Contributed by NM, 1-Jan-2006.) |
Ref | Expression |
---|---|
xor3 | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 381 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
2 | 1 | con2bii 357 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
3 | 2 | bicomi 224 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: nbbn 383 pm5.15 1013 nbi2 1016 xorass 1512 hadnot 1599 nabbib 3051 nmogtmnf 30802 nmopgtmnf 31900 limsucncmpi 36411 wl-3xorbi 37439 wl-3xornot 37447 oneptri 43218 oaordnrex 43257 omnord1ex 43266 oenord1ex 43277 aiffnbandciffatnotciffb 46819 axorbciffatcxorb 46820 abnotbtaxb 46830 afv2orxorb 47143 line2ylem 48485 line2xlem 48487 |
Copyright terms: Public domain | W3C validator |