| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xor3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exclusive or". (Contributed by NM, 1-Jan-2006.) |
| Ref | Expression |
|---|---|
| xor3 | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.18 381 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| 3 | 2 | bicomi 224 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbbn 383 pm5.15 1014 nbi2 1017 xorass 1515 hadnot 1602 nabbib 3029 nmogtmnf 30706 nmopgtmnf 31804 limsucncmpi 36440 wl-3xorbi 37468 wl-3xornot 37476 oneptri 43253 oaordnrex 43291 omnord1ex 43300 oenord1ex 43311 aiffnbandciffatnotciffb 46909 axorbciffatcxorb 46910 abnotbtaxb 46920 afv2orxorb 47233 line2ylem 48744 line2xlem 48746 |
| Copyright terms: Public domain | W3C validator |