MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alfal Structured version   Visualization version   GIF version

Theorem alfal 1815
Description: For all sets, ¬ ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
alfal 𝑥 ¬ ⊥

Proof of Theorem alfal
StepHypRef Expression
1 fal 1556 . 2 ¬ ⊥
21ax-gen 1802 1 𝑥 ¬ ⊥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1540  wfal 1554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802
This theorem depends on definitions:  df-bi 210  df-tru 1545  df-fal 1555
This theorem is referenced by:  nalfal  34237
  Copyright terms: Public domain W3C validator