HomeHome Metamath Proof Explorer
Theorem List (p. 19 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28697)
  Hilbert Space Explorer  Hilbert Space Explorer
(28698-30220)
  Users' Mathboxes  Users' Mathboxes
(30221-44913)
 

Theorem List for Metamath Proof Explorer - 1801-1900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnex 1801 Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
¬ 𝜑        ¬ ∃𝑥𝜑
 
Theoremnfth 1802 No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
𝜑       𝑥𝜑
 
Theoremnfnth 1803 No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
¬ 𝜑       𝑥𝜑
 
Theoremhbth 1804 No variable is (effectively) free in a theorem.

This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form (𝜑 → ∀𝑥𝜑) from smaller formulas of this form. These are useful for constructing hypotheses that state "𝑥 is (effectively) not free in 𝜑". (Contributed by NM, 11-May-1993.) This hb* idiom is generally being replaced by the nf* idiom (see nfth 1802), but keeps its interest in some cases. (Revised by BJ, 23-Sep-2022.)

𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremnftru 1805 The true constant has no free variables. (This can also be proven in one step with nfv 1915, but this proof does not use ax-5 1911.) (Contributed by Mario Carneiro, 6-Oct-2016.)
𝑥
 
Theoremnffal 1806 The false constant has no free variables (see nftru 1805). (Contributed by BJ, 6-May-2019.)
𝑥
 
Theoremsptruw 1807 Version of sp 2182 when 𝜑 is true. Instance of a1i 11. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.)
𝜑       (∀𝑥𝜑𝜑)
 
Theoremaltru 1808 For all sets, is true. (Contributed by Anthony Hart, 13-Sep-2011.)
𝑥
 
Theoremalfal 1809 For all sets, ¬ ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.)
𝑥 ¬ ⊥
 
1.4.3  Axiom scheme ax-4 (Quantified Implication)
 
Axiomax-4 1810 Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105 and Theorem 19.20 of [Margaris] p. 90. It is restated as alim 1811 for labeling consistency. It should be used only by alim 1811. (Contributed by NM, 21-May-2008.) Use alim 1811 instead. (New usage is discouraged.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalim 1811 Restatement of Axiom ax-4 1810, for labeling consistency. It should be the only theorem using ax-4 1810. (Contributed by NM, 10-Jan-1993.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalimi 1812 Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Jan-1993.)
(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theorem2alimi 1813 Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
 
Theoremala1 1814 Add an antecedent in a universally quantified formula. (Contributed by BJ, 6-Oct-2018.)
(∀𝑥𝜑 → ∀𝑥(𝜓𝜑))
 
Theoremal2im 1815 Closed form of al2imi 1816. Version of alim 1811 for a nested implication. (Contributed by Alan Sare, 31-Dec-2011.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremal2imi 1816 Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalanimi 1817 Variant of al2imi 1816 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
((𝜑𝜓) → 𝜒)       ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
 
Theoremalimdh 1818 Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1811. (Contributed by NM, 4-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalbi 1819 Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
 
Theoremalbii 1820 Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.)
(𝜑𝜓)       (∀𝑥𝜑 ↔ ∀𝑥𝜓)
 
Theorem2albii 1821 Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
(𝜑𝜓)       (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
 
Theoremsylgt 1822 Closed form of sylg 1823. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜓𝜒) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))
 
Theoremsylg 1823 A syllogism combined with generalization. Inference associated with sylgt 1822. General form of alrimih 1824. (Contributed by BJ, 4-Oct-2019.)
(𝜑 → ∀𝑥𝜓)    &   (𝜓𝜒)       (𝜑 → ∀𝑥𝜒)
 
Theoremalrimih 1824 Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2207 and 19.21h 2295. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremhbxfrbi 1825 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2944 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝜓)    &   (𝜓 → ∀𝑥𝜓)       (𝜑 → ∀𝑥𝜑)
 
Theoremalex 1826 Universal quantifier in terms of existential quantifier and negation. Dual of df-ex 1781. See also the dual pair alnex 1782 / exnal 1827. Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.)
(∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
 
Theoremexnal 1827 Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1782. See also the dual pair df-ex 1781 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
(∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
 
Theorem2nalexn 1828 Part of theorem *11.5 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
(¬ ∀𝑥𝑦𝜑 ↔ ∃𝑥𝑦 ¬ 𝜑)
 
Theorem2exnaln 1829 Theorem *11.22 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
 
Theorem2nexaln 1830 Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
(¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
 
Theoremalimex 1831 An equivalence between an implication with a universally quantified consequent and an implication with an existentially quantified antecedent. An interesting case is when the same formula is substituted for both 𝜑 and 𝜓, since then both implications express a type of non-freeness. See also eximal 1783. (Contributed by BJ, 12-May-2019.)
((𝜑 → ∀𝑥𝜓) ↔ (∃𝑥 ¬ 𝜓 → ¬ 𝜑))
 
Theoremaleximi 1832 A variant of al2imi 1816: instead of applying 𝑥 quantifiers to the final implication, replace them with 𝑥. A shorter proof is possible using nfa1 2155, sps 2184 and eximd 2216, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremalexbii 1833 Biconditional form of aleximi 1832. (Contributed by BJ, 16-Nov-2020.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremexim 1834 Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremeximi 1835 Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.)
(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theorem2eximi 1836 Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
 
Theoremeximii 1837 Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.)
𝑥𝜑    &   (𝜑𝜓)       𝑥𝜓
 
Theoremexa1 1838 Add an antecedent in an existentially quantified formula. (Contributed by BJ, 6-Oct-2018.)
(∃𝑥𝜑 → ∃𝑥(𝜓𝜑))
 
Theorem19.38 1839 Theorem 19.38 of [Margaris] p. 90. The converse holds under non-freeness conditions, see 19.38a 1840 and 19.38b 1841. (Contributed by NM, 12-Mar-1993.) Allow a shortening of 19.21t 2206. (Revised by Wolf Lammen, 2-Jan-2018.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.38a 1840 Under a non-freeness hypothesis, the implication 19.38 1839 can be strengthened to an equivalence. See also 19.38b 1841. (Contributed by BJ, 3-Nov-2021.) (Proof shortened by Wolf Lammen, 9-Jul-2022.)
(Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
 
Theorem19.38b 1841 Under a non-freeness hypothesis, the implication 19.38 1839 can be strengthened to an equivalence. See also 19.38a 1840. (Contributed by BJ, 3-Nov-2021.) (Proof shortened by Wolf Lammen, 9-Jul-2022.)
(Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
 
Theoremimnang 1842 Quantified implication in terms of quantified negation of conjunction. (Contributed by BJ, 16-Jul-2021.)
(∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑𝜓))
 
Theoremalinexa 1843 A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
(∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
 
Theoremexnalimn 1844 Existential quantification of a conjunction expressed with only primitive symbols (, ¬, ). (Contributed by NM, 10-May-1993.) State the most general instance. (Revised by BJ, 29-Sep-2019.)
(∃𝑥(𝜑𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓))
 
Theoremalexn 1845 A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.)
(∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
 
Theorem2exnexn 1846 Theorem *11.51 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) (Proof shortened by Wolf Lammen, 25-Sep-2014.)
(∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
 
Theoremexbi 1847 Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremexbii 1848 Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.)
(𝜑𝜓)       (∃𝑥𝜑 ↔ ∃𝑥𝜓)
 
Theorem2exbii 1849 Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)
 
Theorem3exbii 1850 Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
 
Theoremnfbiit 1851 Equivalence theorem for the non-freeness predicate. Closed form of nfbii 1852. (Contributed by Giovanni Mascellani, 10-Apr-2018.) Reduce axiom usage. (Revised by BJ, 6-May-2019.)
(∀𝑥(𝜑𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
 
Theoremnfbii 1852 Equality theorem for the non-freeness predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
(𝜑𝜓)       (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
 
Theoremnfxfr 1853 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑𝜓)    &   𝑥𝜓       𝑥𝜑
 
Theoremnfxfrd 1854 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑𝜓)    &   (𝜒 → Ⅎ𝑥𝜓)       (𝜒 → Ⅎ𝑥𝜑)
 
Theoremnfnbi 1855 A variable is non-free in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.)
(Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
 
Theoremnfnt 1856 If a variable is non-free in a proposition, then it is non-free in its negation. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) df-nf 1785 changed. (Revised by Wolf Lammen, 4-Oct-2021.)
(Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
 
Theoremnfn 1857 Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑       𝑥 ¬ 𝜑
 
Theoremnfnd 1858 Deduction associated with nfnt 1856. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥 ¬ 𝜓)
 
Theoremexanali 1859 A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.)
(∃𝑥(𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
 
Theorem2exanali 1860 Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
(¬ ∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
 
Theoremexancom 1861 Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
 
Theoremexan 1862 Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen, 6-Nov-2022.) Expand hypothesis. (Revised by Steven Nguyen, 19-Jun-2023.)
𝑥𝜑    &   𝜓       𝑥(𝜑𝜓)
 
TheoremexanOLD 1863 Obsolete proof of exan 1862 as of 19-Jun-2023. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen, 6-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝜑𝜓)       𝑥(𝜑𝜓)
 
Theoremalrimdh 1864 Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2207 and 19.21h 2295. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximdh 1865 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremnexdh 1866 Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremalbidh 1867 Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbidh 1868 Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 26-May-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremexsimpl 1869 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
 
Theoremexsimpr 1870 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
 
Theorem19.26 1871 Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.26-2 1872 Theorem 19.26 1871 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))
 
Theorem19.26-3an 1873 Theorem 19.26 1871 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
(∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))
 
Theorem19.29 1874 Theorem 19.29 of [Margaris] p. 90. See also 19.29r 1875. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r 1875 Variation of 19.29 1874. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.)
((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r2 1876 Variation of 19.29r 1875 with double quantification. (Contributed by NM, 3-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.29x 1877 Variation of 19.29 1874 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.35 1878 Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
(∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
 
Theorem19.35i 1879 Inference associated with 19.35 1878. (Contributed by NM, 21-Jun-1993.)
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∃𝑥𝜓)
 
Theorem19.35ri 1880 Inference associated with 19.35 1878. (Contributed by NM, 12-Mar-1993.)
(∀𝑥𝜑 → ∃𝑥𝜓)       𝑥(𝜑𝜓)
 
Theorem19.25 1881 Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
(∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
 
Theorem19.30 1882 Theorem 19.30 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.43 1883 Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.43OLD 1884 Obsolete proof of 19.43 1883. Do not delete as it is referenced on the mmrecent.html 1883 page and in conventions-labels 28182. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.33 1885 Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.33b 1886 The antecedent provides a condition implying the converse of 19.33 1885. (Contributed by NM, 27-Mar-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 5-Jul-2014.)
(¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.40 1887 Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.)
(∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.40-2 1888 Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with two quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theorem19.40b 1889 The antecedent provides a condition implying the converse of 19.40 1887. This is to 19.40 1887 what 19.33b 1886 is to 19.33 1885. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 13-Nov-2020.)
((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓)))
 
Theoremalbiim 1890 Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
 
Theorem2albiim 1891 Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
 
Theoremexintrbi 1892 Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
 
Theoremexintr 1893 Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
 
Theoremalsyl 1894 Universally quantified and uncurried (imported) form of syllogism. Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))
 
Theoremnfimd 1895 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). Deduction form of nfim 1897. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1896. (Revised by Wolf Lammen, 10-Jul-2022.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnfimt 1896 Closed form of nfim 1897 and nfimd 1895. (Contributed by BJ, 20-Oct-2021.) Eliminate curried form, former name nfimt2. (Revised by Wolf Lammen, 6-Jul-2022.)
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theoremnfim 1897 If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). Inference associated with nfimt 1896. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) df-nf 1785 changed. (Revised by Wolf Lammen, 17-Sep-2021.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremnfand 1898 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnf3and 1899 Deduction form of bound-variable hypothesis builder nf3an 1902. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → Ⅎ𝑥𝜃)       (𝜑 → Ⅎ𝑥(𝜓𝜒𝜃))
 
Theoremnfan 1900 If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 9-Oct-2021.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44913
  Copyright terms: Public domain < Previous  Next >