Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nalfal Structured version   Visualization version   GIF version

Theorem nalfal 34519
Description: Not all sets hold as true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
nalfal ¬ ∀𝑥

Proof of Theorem nalfal
StepHypRef Expression
1 alfal 1812 . 2 𝑥 ¬ ⊥
2 falim 1556 . . 3 (⊥ → ¬ ∀𝑥 ¬ ⊥)
32sps 2180 . 2 (∀𝑥⊥ → ¬ ∀𝑥 ¬ ⊥)
41, 3mt2 199 1 ¬ ∀𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator