Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nalfal | Structured version Visualization version GIF version |
Description: Not all sets hold ⊥ as true. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
nalfal | ⊢ ¬ ∀𝑥⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alfal 1812 | . 2 ⊢ ∀𝑥 ¬ ⊥ | |
2 | falim 1556 | . . 3 ⊢ (⊥ → ¬ ∀𝑥 ¬ ⊥) | |
3 | 2 | sps 2180 | . 2 ⊢ (∀𝑥⊥ → ¬ ∀𝑥 ¬ ⊥) |
4 | 1, 3 | mt2 199 | 1 ⊢ ¬ ∀𝑥⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |