Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nalfal Structured version   Visualization version   GIF version

Theorem nalfal 36416
Description: Not all sets hold as true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
nalfal ¬ ∀𝑥

Proof of Theorem nalfal
StepHypRef Expression
1 alfal 1809 . 2 𝑥 ¬ ⊥
2 falim 1558 . . 3 (⊥ → ¬ ∀𝑥 ¬ ⊥)
32sps 2187 . 2 (∀𝑥⊥ → ¬ ∀𝑥 ¬ ⊥)
41, 3mt2 200 1 ¬ ∀𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2179
This theorem depends on definitions:  df-bi 207  df-tru 1544  df-fal 1554  df-ex 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator