Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1552 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: nbfal 1554 bifal 1555 falim 1556 dfnot 1558 notfal 1567 falantru 1574 nffal 1808 alfal 1811 sbn1 2106 nonconne 2956 dfnul3 4261 noel 4265 vn0 4273 csbprc 4341 axnulALT 5229 axnul 5230 canthp1 10419 rlimno1 15374 1stccnp 22622 nexfal 34603 negsym1 34615 nandsym1 34620 subsym1 34625 bj-falor 34775 orfa 36249 fald 36296 dihglblem6 39361 ifpdfan 41080 ifpnot 41084 ifpid2 41085 ifpdfxor 41101 |
Copyright terms: Public domain | W3C validator |