MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fal Structured version   Visualization version   GIF version

Theorem fal 1539
Description: The truth value is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.)
Assertion
Ref Expression
fal ¬ ⊥

Proof of Theorem fal
StepHypRef Expression
1 tru 1529 . . 3
21notnoti 145 . 2 ¬ ¬ ⊤
3 df-fal 1538 . 2 (⊥ ↔ ¬ ⊤)
42, 3mtbir 324 1 ¬ ⊥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wtru 1526  wfal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-tru 1528  df-fal 1538
This theorem is referenced by:  nbfal  1540  bifal  1541  falim  1542  dfnot  1544  notfal  1553  falantru  1560  nffal  1791  alfal  1794  nonconne  2998  csbprc  4284  axnulALT  5106  axnul  5107  canthp1  9929  rlimno1  14848  1stccnp  21758  nexfal  33364  negsym1  33376  nandsym1  33381  subsym1  33386  bj-falor  33529  orfa  34913  fald  34960  dihglblem6  38028  sbn1  38653  ifpdfan  39337  ifpnot  39341  ifpid2  39342  ifpdfxor  39359
  Copyright terms: Public domain W3C validator