| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1553 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: nbfal 1555 bifal 1556 falim 1557 dfnot 1559 notfal 1568 falantru 1575 nffal 1805 alfal 1808 sbn1 2108 nonconne 2937 dfnul3 4300 noel 4301 vn0 4308 csbprc 4372 axnulALT 5259 axnul 5260 canthp1 10607 rlimno1 15620 1stccnp 23349 axsepg2ALT 35073 nexfal 36393 negsym1 36405 nandsym1 36410 bj-falor 36572 orfa 38076 fald 38123 dihglblem6 41334 ifpdfan 43455 ifpnot 43459 ifpid2 43460 ifpdfxor 43476 |
| Copyright terms: Public domain | W3C validator |