![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1545 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1554 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 322 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1542 ⊥wfal 1553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-fal 1554 |
This theorem is referenced by: nbfal 1556 bifal 1557 falim 1558 dfnot 1560 notfal 1569 falantru 1576 nffal 1807 alfal 1810 sbn1 2105 nonconne 2952 dfnul3 4326 noel 4330 vn0 4338 csbprc 4406 axnulALT 5304 axnul 5305 canthp1 10648 rlimno1 15599 1stccnp 22965 nexfal 35285 negsym1 35297 nandsym1 35302 bj-falor 35457 orfa 36945 fald 36992 dihglblem6 40206 ifpdfan 42207 ifpnot 42211 ifpid2 42212 ifpdfxor 42228 |
Copyright terms: Public domain | W3C validator |