Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1552 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 322 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: nbfal 1554 bifal 1555 falim 1556 dfnot 1558 notfal 1567 falantru 1574 nffal 1809 alfal 1812 sbn1 2107 nonconne 2954 dfnul3 4257 noel 4261 vn0 4269 csbprc 4337 axnulALT 5223 axnul 5224 canthp1 10341 rlimno1 15293 1stccnp 22521 nexfal 34521 negsym1 34533 nandsym1 34538 subsym1 34543 bj-falor 34693 orfa 36167 fald 36214 dihglblem6 39281 ifpdfan 40971 ifpnot 40975 ifpid2 40976 ifpdfxor 40992 |
Copyright terms: Public domain | W3C validator |