| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1553 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: nbfal 1555 bifal 1556 falim 1557 dfnot 1559 notfal 1568 falantru 1575 nffal 1805 alfal 1808 sbn1 2108 nonconne 2945 dfnul3 4317 noel 4318 vn0 4325 csbprc 4389 axnulALT 5279 axnul 5280 canthp1 10673 rlimno1 15675 1stccnp 23405 axsepg2ALT 35119 nexfal 36428 negsym1 36440 nandsym1 36445 bj-falor 36607 orfa 38111 fald 38158 dihglblem6 41364 ifpdfan 43457 ifpnot 43461 ifpid2 43462 ifpdfxor 43478 |
| Copyright terms: Public domain | W3C validator |