MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fal Structured version   Visualization version   GIF version

Theorem fal 1554
Description: The truth value is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.)
Assertion
Ref Expression
fal ¬ ⊥

Proof of Theorem fal
StepHypRef Expression
1 tru 1544 . . 3
21notnoti 143 . 2 ¬ ¬ ⊤
3 df-fal 1553 . 2 (⊥ ↔ ¬ ⊤)
42, 3mtbir 323 1 ¬ ⊥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1543  df-fal 1553
This theorem is referenced by:  nbfal  1555  bifal  1556  falim  1557  dfnot  1559  notfal  1568  falantru  1575  nffal  1805  alfal  1808  sbn1  2108  nonconne  2945  dfnul3  4317  noel  4318  vn0  4325  csbprc  4389  axnulALT  5279  axnul  5280  canthp1  10673  rlimno1  15675  1stccnp  23405  axsepg2ALT  35119  nexfal  36428  negsym1  36440  nandsym1  36445  bj-falor  36607  orfa  38111  fald  38158  dihglblem6  41364  ifpdfan  43457  ifpnot  43461  ifpid2  43462  ifpdfxor  43478
  Copyright terms: Public domain W3C validator