| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1553 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: nbfal 1555 bifal 1556 falim 1557 dfnot 1559 notfal 1568 falantru 1575 nffal 1805 alfal 1808 sbn1 2108 nonconne 2937 dfnul3 4288 noel 4289 vn0 4296 csbprc 4360 axnulALT 5243 axnul 5244 canthp1 10548 rlimno1 15561 1stccnp 23347 axsepg2ALT 35050 nexfal 36383 negsym1 36395 nandsym1 36400 bj-falor 36562 orfa 38066 fald 38113 dihglblem6 41323 ifpdfan 43443 ifpnot 43447 ifpid2 43448 ifpdfxor 43464 |
| Copyright terms: Public domain | W3C validator |