![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1529 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 145 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1538 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 324 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1526 ⊥wfal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-tru 1528 df-fal 1538 |
This theorem is referenced by: nbfal 1540 bifal 1541 falim 1542 dfnot 1544 notfal 1553 falantru 1560 nffal 1791 alfal 1794 nonconne 2998 csbprc 4284 axnulALT 5106 axnul 5107 canthp1 9929 rlimno1 14848 1stccnp 21758 nexfal 33364 negsym1 33376 nandsym1 33381 subsym1 33386 bj-falor 33529 orfa 34913 fald 34960 dihglblem6 38028 sbn1 38653 ifpdfan 39337 ifpnot 39341 ifpid2 39342 ifpdfxor 39359 |
Copyright terms: Public domain | W3C validator |