| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1553 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: nbfal 1555 bifal 1556 falim 1557 dfnot 1559 notfal 1568 falantru 1575 nffal 1805 alfal 1808 sbn1 2108 nonconne 2937 dfnul3 4296 noel 4297 vn0 4304 csbprc 4368 axnulALT 5254 axnul 5255 canthp1 10583 rlimno1 15596 1stccnp 23382 axsepg2ALT 35066 nexfal 36386 negsym1 36398 nandsym1 36403 bj-falor 36565 orfa 38069 fald 38116 dihglblem6 41327 ifpdfan 43448 ifpnot 43452 ifpid2 43453 ifpdfxor 43469 |
| Copyright terms: Public domain | W3C validator |