| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| fal | ⊢ ¬ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . . 3 ⊢ ⊤ | |
| 2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
| 3 | df-fal 1554 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1542 ⊥wfal 1553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-fal 1554 |
| This theorem is referenced by: nbfal 1556 bifal 1557 falim 1558 dfnot 1560 notfal 1569 falantru 1576 nffal 1806 alfal 1809 sbn1 2110 nonconne 2940 dfnul3 4284 noel 4285 vn0 4292 csbprc 4356 axnulALT 5240 axnul 5241 canthp1 10545 rlimno1 15561 1stccnp 23377 axsepg2ALT 35095 nexfal 36449 negsym1 36461 nandsym1 36466 bj-falor 36628 orfa 38132 fald 38179 dihglblem6 41449 ifpdfan 43569 ifpnot 43573 ifpid2 43574 ifpdfxor 43590 |
| Copyright terms: Public domain | W3C validator |