![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1550 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1538 ⊥wfal 1549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1540 df-fal 1550 |
This theorem is referenced by: nbfal 1552 bifal 1553 falim 1554 dfnot 1556 notfal 1565 falantru 1572 nffal 1802 alfal 1805 sbn1 2105 nonconne 2950 dfnul3 4343 noel 4344 vn0 4351 csbprc 4415 axnulALT 5310 axnul 5311 canthp1 10692 rlimno1 15687 1stccnp 23486 axsepg2ALT 35076 nexfal 36388 negsym1 36400 nandsym1 36405 bj-falor 36567 orfa 38069 fald 38116 dihglblem6 41323 ifpdfan 43456 ifpnot 43460 ifpid2 43461 ifpdfxor 43477 |
Copyright terms: Public domain | W3C validator |