![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1541 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1550 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1538 ⊥wfal 1549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1540 df-fal 1550 |
This theorem is referenced by: nbfal 1552 bifal 1553 falim 1554 dfnot 1556 notfal 1565 falantru 1572 nffal 1803 alfal 1806 sbn1 2107 nonconne 2958 dfnul3 4356 noel 4360 vn0 4368 csbprc 4432 axnulALT 5322 axnul 5323 canthp1 10723 rlimno1 15702 1stccnp 23491 axsepg2ALT 35059 nexfal 36371 negsym1 36383 nandsym1 36388 bj-falor 36550 orfa 38042 fald 38089 dihglblem6 41297 ifpdfan 43428 ifpnot 43432 ifpid2 43433 ifpdfxor 43449 |
Copyright terms: Public domain | W3C validator |