![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1555 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1543 ⊥wfal 1554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1545 df-fal 1555 |
This theorem is referenced by: nbfal 1557 bifal 1558 falim 1559 dfnot 1561 notfal 1570 falantru 1577 nffal 1808 alfal 1811 sbn1 2106 nonconne 2953 dfnul3 4327 noel 4331 vn0 4339 csbprc 4407 axnulALT 5305 axnul 5306 canthp1 10649 rlimno1 15600 1stccnp 22966 nexfal 35290 negsym1 35302 nandsym1 35307 bj-falor 35462 orfa 36950 fald 36997 dihglblem6 40211 ifpdfan 42217 ifpnot 42221 ifpid2 42222 ifpdfxor 42238 |
Copyright terms: Public domain | W3C validator |