Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fal | Structured version Visualization version GIF version |
Description: The truth value ⊥ is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) |
Ref | Expression |
---|---|
fal | ⊢ ¬ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1544 | . . 3 ⊢ ⊤ | |
2 | 1 | notnoti 143 | . 2 ⊢ ¬ ¬ ⊤ |
3 | df-fal 1553 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
4 | 2, 3 | mtbir 322 | 1 ⊢ ¬ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1541 ⊥wfal 1552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1543 df-fal 1553 |
This theorem is referenced by: nbfal 1555 bifal 1556 falim 1557 dfnot 1559 notfal 1568 falantru 1575 nffal 1806 alfal 1809 sbn1 2104 nonconne 2952 dfnul3 4270 noel 4274 vn0 4282 csbprc 4350 axnulALT 5242 axnul 5243 canthp1 10489 rlimno1 15441 1stccnp 22693 nexfal 34664 negsym1 34676 nandsym1 34681 bj-falor 34836 orfa 36317 fald 36364 dihglblem6 39580 ifpdfan 41312 ifpnot 41316 ifpid2 41317 ifpdfxor 41333 |
Copyright terms: Public domain | W3C validator |