Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an12i Structured version   Visualization version   GIF version

Theorem an12i 35801
Description: An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.)
Hypothesis
Ref Expression
an12i.1 (𝜑 ∧ (𝜓𝜒))
Assertion
Ref Expression
an12i (𝜓 ∧ (𝜑𝜒))

Proof of Theorem an12i
StepHypRef Expression
1 an12i.1 . 2 (𝜑 ∧ (𝜓𝜒))
2 an12 645 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ (𝜑 ∧ (𝜓𝜒)))
31, 2mpbir 234 1 (𝜓 ∧ (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wa 400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator