![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 461 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an21 631 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr3i 269 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: an32 633 an13 634 an12s 636 an4 643 3anan12 1077 ceqsrexv 3557 rmoan 3636 2reuswap 3643 2reuswap2 3644 reuxfr3d 3645 reuind 3647 2rmoswap 3655 sbccomlem 3750 elunirab 4720 axsep 5055 opeliunxp 5465 elinxp 5732 resoprab 7084 elrnmpores 7102 ov6g 7126 opabex3d 7476 opabex3rd 7477 opabex3 7478 dfrecs3 7811 oeeu 8028 xpassen 8405 omxpenlem 8412 dfac5lem2 9342 ltexprlem4 10257 2clim 14788 divalglem10 15611 bitsmod 15643 isssc 16960 eldmcoa 17195 issubrg 19270 isbasis2g 21272 tgval2 21280 is1stc2 21766 elflim2 22288 i1fres 24021 dvdsflsumcom 25479 vmasum 25506 logfac2 25507 axcontlem2 26466 fusgr2wsp2nb 27880 1stpreima 30215 bnj849 31873 elima4 32568 elfuns 32926 dfrecs2 32961 dfrdg4 32962 bj-axsep 33652 bj-restuni 33927 mptsnunlem 34090 relowlpssretop 34116 poimirlem27 34389 sstotbnd3 34525 an12i 34849 selconj 34851 eldmqsres 35016 inxpxrn 35117 rnxrnres 35121 refrelredund4 35344 islshpat 35627 islpln5 36145 islvol5 36189 cdleme0nex 36900 dicelval3 37790 mapdordlem1a 38244 2reuimp 42745 elpglem3 44207 |
Copyright terms: Public domain | W3C validator |