| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3610 rmoan 3698 2reuswap 3705 2reuswap2 3706 reuxfrd 3707 reuind 3712 2rmoswap 3720 sbccomlemOLD 3821 indifdi 4244 elunirab 4874 axsepgfromrep 5232 opeliunxp 5683 elinxp 5968 resoprab 7464 elrnmpores 7484 ov6g 7510 opabex3d 7897 opabex3rd 7898 opabex3 7899 dfrecs3 8292 oeeu 8518 xpassen 8984 omxpenlem 8991 dfac5lem2 10015 ltexprlem4 10930 2clim 15479 divalglem10 16313 bitsmod 16347 isssc 17727 eldmcoa 17972 issubrg 20487 isbasis2g 22864 tgval2 22872 is1stc2 23358 elflim2 23880 i1fres 25634 dvdsflsumcom 27126 vmasum 27155 logfac2 27156 axcontlem2 28944 fusgr2wsp2nb 30312 reuxfrdf 32468 1stpreima 32686 bnj849 34935 elima4 35818 elfuns 35955 dfrecs2 35990 dfrdg4 35991 bj-restuni 37137 bj-imdirco 37230 mptsnunlem 37378 relowlpssretop 37404 poimirlem27 37693 sstotbnd3 37822 an12i 38144 selconj 38146 eldmqsres 38327 inxpxrn 38433 rnxrnres 38437 refrelredund4 38678 islshpat 39062 islpln5 39580 islvol5 39624 cdleme0nex 40335 dicelval3 41225 mapdordlem1a 41679 tfsconcat0i 43384 ismnushort 44340 modelaxreplem2 45018 modelaxreplem3 45019 2reuimp 47152 elpglem3 49751 |
| Copyright terms: Public domain | W3C validator |