![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 640 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 463 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an12s 647 an4 654 3anan12 1096 ceqsrexv 3643 rmoan 3735 2reuswap 3742 2reuswap2 3743 reuxfrd 3744 reuind 3749 2rmoswap 3757 sbccomlem 3864 indifdi 4283 elunirab 4924 axsepgfromrep 5297 opeliunxp 5743 elinxp 6019 resoprab 7528 elrnmpores 7548 ov6g 7573 opabex3d 7954 opabex3rd 7955 opabex3 7956 dfrecs3 8374 dfrecs3OLD 8375 oeeu 8605 xpassen 9068 omxpenlem 9075 dfac5lem2 10121 ltexprlem4 11036 2clim 15518 divalglem10 16347 bitsmod 16379 isssc 17769 eldmcoa 18017 issubrg 20323 isbasis2g 22458 tgval2 22466 is1stc2 22953 elflim2 23475 i1fres 25230 dvdsflsumcom 26699 vmasum 26726 logfac2 26727 axcontlem2 28261 fusgr2wsp2nb 29625 reuxfrdf 31769 1stpreima 31966 bnj849 34005 elima4 34822 elfuns 34962 dfrecs2 34997 dfrdg4 34998 bj-restuni 36070 bj-imdirco 36163 mptsnunlem 36311 relowlpssretop 36337 poimirlem27 36607 sstotbnd3 36736 an12i 37058 selconj 37060 eldmqsres 37247 inxpxrn 37357 rnxrnres 37361 refrelredund4 37597 islshpat 37979 islpln5 38498 islvol5 38542 cdleme0nex 39253 dicelval3 40143 mapdordlem1a 40597 tfsconcat0i 42183 ismnushort 43148 2reuimp 45908 elpglem3 47842 |
Copyright terms: Public domain | W3C validator |