| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3612 rmoan 3701 2reuswap 3708 2reuswap2 3709 reuxfrd 3710 reuind 3715 2rmoswap 3723 sbccomlemOLD 3824 indifdi 4247 elunirab 4876 axsepgfromrep 5236 opeliunxp 5690 elinxp 5974 resoprab 7471 elrnmpores 7491 ov6g 7517 opabex3d 7907 opabex3rd 7908 opabex3 7909 dfrecs3 8302 oeeu 8528 xpassen 8995 omxpenlem 9002 dfac5lem2 10037 ltexprlem4 10952 2clim 15497 divalglem10 16331 bitsmod 16365 isssc 17745 eldmcoa 17990 issubrg 20474 isbasis2g 22851 tgval2 22859 is1stc2 23345 elflim2 23867 i1fres 25622 dvdsflsumcom 27114 vmasum 27143 logfac2 27144 axcontlem2 28928 fusgr2wsp2nb 30296 reuxfrdf 32453 1stpreima 32663 bnj849 34894 elima4 35751 elfuns 35891 dfrecs2 35926 dfrdg4 35927 bj-restuni 37073 bj-imdirco 37166 mptsnunlem 37314 relowlpssretop 37340 poimirlem27 37629 sstotbnd3 37758 an12i 38080 selconj 38082 eldmqsres 38263 inxpxrn 38369 rnxrnres 38373 refrelredund4 38614 islshpat 38998 islpln5 39517 islvol5 39561 cdleme0nex 40272 dicelval3 41162 mapdordlem1a 41616 tfsconcat0i 43321 ismnushort 44277 modelaxreplem2 44956 modelaxreplem3 44957 2reuimp 47103 elpglem3 49702 |
| Copyright terms: Public domain | W3C validator |