Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 639 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 463 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an12s 646 an4 653 3anan12 1095 ceqsrexv 3585 rmoan 3674 2reuswap 3681 2reuswap2 3682 reuxfrd 3683 reuind 3688 2rmoswap 3696 sbccomlem 3803 indifdi 4217 elunirab 4855 axsepgfromrep 5221 opeliunxp 5654 elinxp 5929 resoprab 7392 elrnmpores 7411 ov6g 7436 opabex3d 7808 opabex3rd 7809 opabex3 7810 dfrecs3 8203 dfrecs3OLD 8204 oeeu 8434 xpassen 8853 omxpenlem 8860 dfac5lem2 9880 ltexprlem4 10795 2clim 15281 divalglem10 16111 bitsmod 16143 isssc 17532 eldmcoa 17780 issubrg 20024 isbasis2g 22098 tgval2 22106 is1stc2 22593 elflim2 23115 i1fres 24870 dvdsflsumcom 26337 vmasum 26364 logfac2 26365 axcontlem2 27333 fusgr2wsp2nb 28698 reuxfrdf 30839 1stpreima 31039 bnj849 32905 elima4 33750 elfuns 34217 dfrecs2 34252 dfrdg4 34253 bj-restuni 35268 bj-imdirco 35361 mptsnunlem 35509 relowlpssretop 35535 poimirlem27 35804 sstotbnd3 35934 an12i 36256 selconj 36258 eldmqsres 36421 inxpxrn 36521 rnxrnres 36525 refrelredund4 36748 islshpat 37031 islpln5 37549 islvol5 37593 cdleme0nex 38304 dicelval3 39194 mapdordlem1a 39648 ismnushort 41919 2reuimp 44607 elpglem3 46418 |
Copyright terms: Public domain | W3C validator |