| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3606 rmoan 3694 2reuswap 3701 2reuswap2 3702 reuxfrd 3703 reuind 3708 2rmoswap 3716 sbccomlemOLD 3817 indifdi 4243 elunirab 4875 axsepgfromrep 5236 opeliunxp 5688 elinxp 5974 resoprab 7472 elrnmpores 7492 ov6g 7518 opabex3d 7905 opabex3rd 7906 opabex3 7907 dfrecs3 8300 oeeu 8526 xpassen 8993 omxpenlem 9000 dfac5lem2 10024 ltexprlem4 10939 2clim 15483 divalglem10 16317 bitsmod 16351 isssc 17731 eldmcoa 17976 issubrg 20490 isbasis2g 22866 tgval2 22874 is1stc2 23360 elflim2 23882 i1fres 25636 dvdsflsumcom 27128 vmasum 27157 logfac2 27158 axcontlem2 28947 fusgr2wsp2nb 30318 reuxfrdf 32474 1stpreima 32694 bnj849 34960 elima4 35843 elfuns 35980 dfrecs2 36017 dfrdg4 36018 bj-restuni 37164 bj-imdirco 37257 mptsnunlem 37405 relowlpssretop 37431 poimirlem27 37710 sstotbnd3 37839 an12i 38161 selconj 38163 eldmqsres 38348 inxpxrn 38465 rnxrnres 38469 refrelredund4 38754 islshpat 39139 islpln5 39657 islvol5 39701 cdleme0nex 40412 dicelval3 41302 mapdordlem1a 41756 tfsconcat0i 43465 ismnushort 44421 modelaxreplem2 45099 modelaxreplem3 45100 2reuimp 47242 elpglem3 49841 |
| Copyright terms: Public domain | W3C validator |