| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3624 rmoan 3713 2reuswap 3720 2reuswap2 3721 reuxfrd 3722 reuind 3727 2rmoswap 3735 sbccomlemOLD 3836 indifdi 4260 elunirab 4889 axsepgfromrep 5252 opeliunxp 5708 elinxp 5993 resoprab 7510 elrnmpores 7530 ov6g 7556 opabex3d 7947 opabex3rd 7948 opabex3 7949 dfrecs3 8344 oeeu 8570 xpassen 9040 omxpenlem 9047 dfac5lem2 10084 ltexprlem4 10999 2clim 15545 divalglem10 16379 bitsmod 16413 isssc 17789 eldmcoa 18034 issubrg 20487 isbasis2g 22842 tgval2 22850 is1stc2 23336 elflim2 23858 i1fres 25613 dvdsflsumcom 27105 vmasum 27134 logfac2 27135 axcontlem2 28899 fusgr2wsp2nb 30270 reuxfrdf 32427 1stpreima 32637 bnj849 34922 elima4 35770 elfuns 35910 dfrecs2 35945 dfrdg4 35946 bj-restuni 37092 bj-imdirco 37185 mptsnunlem 37333 relowlpssretop 37359 poimirlem27 37648 sstotbnd3 37777 an12i 38099 selconj 38101 eldmqsres 38282 inxpxrn 38388 rnxrnres 38392 refrelredund4 38633 islshpat 39017 islpln5 39536 islvol5 39580 cdleme0nex 40291 dicelval3 41181 mapdordlem1a 41635 tfsconcat0i 43341 ismnushort 44297 modelaxreplem2 44976 modelaxreplem3 44977 2reuimp 47120 elpglem3 49706 |
| Copyright terms: Public domain | W3C validator |