![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 462 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 464 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: an12s 648 an4 655 3anan12 1097 ceqsrexv 3643 rmoan 3735 2reuswap 3742 2reuswap2 3743 reuxfrd 3744 reuind 3749 2rmoswap 3757 sbccomlem 3864 indifdi 4283 elunirab 4924 axsepgfromrep 5297 opeliunxp 5742 elinxp 6018 resoprab 7523 elrnmpores 7543 ov6g 7568 opabex3d 7949 opabex3rd 7950 opabex3 7951 dfrecs3 8369 dfrecs3OLD 8370 oeeu 8600 xpassen 9063 omxpenlem 9070 dfac5lem2 10116 ltexprlem4 11031 2clim 15513 divalglem10 16342 bitsmod 16374 isssc 17764 eldmcoa 18012 issubrg 20356 isbasis2g 22443 tgval2 22451 is1stc2 22938 elflim2 23460 i1fres 25215 dvdsflsumcom 26682 vmasum 26709 logfac2 26710 axcontlem2 28213 fusgr2wsp2nb 29577 reuxfrdf 31719 1stpreima 31916 bnj849 33925 elima4 34736 elfuns 34876 dfrecs2 34911 dfrdg4 34912 bj-restuni 35967 bj-imdirco 36060 mptsnunlem 36208 relowlpssretop 36234 poimirlem27 36504 sstotbnd3 36633 an12i 36955 selconj 36957 eldmqsres 37144 inxpxrn 37254 rnxrnres 37258 refrelredund4 37494 islshpat 37876 islpln5 38395 islvol5 38439 cdleme0nex 39150 dicelval3 40040 mapdordlem1a 40494 tfsconcat0i 42081 ismnushort 43046 2reuimp 45810 elpglem3 47712 |
Copyright terms: Public domain | W3C validator |