Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 638 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an12s 645 an4 652 3anan12 1094 ceqsrexv 3578 rmoan 3669 2reuswap 3676 2reuswap2 3677 reuxfrd 3678 reuind 3683 2rmoswap 3691 sbccomlem 3799 indifdi 4214 elunirab 4852 axsepgfromrep 5216 opeliunxp 5645 elinxp 5918 resoprab 7370 elrnmpores 7389 ov6g 7414 opabex3d 7781 opabex3rd 7782 opabex3 7783 dfrecs3 8174 dfrecs3OLD 8175 oeeu 8396 xpassen 8806 omxpenlem 8813 dfac5lem2 9811 ltexprlem4 10726 2clim 15209 divalglem10 16039 bitsmod 16071 isssc 17449 eldmcoa 17696 issubrg 19939 isbasis2g 22006 tgval2 22014 is1stc2 22501 elflim2 23023 i1fres 24775 dvdsflsumcom 26242 vmasum 26269 logfac2 26270 axcontlem2 27236 fusgr2wsp2nb 28599 reuxfrdf 30740 1stpreima 30941 bnj849 32805 elima4 33656 elfuns 34144 dfrecs2 34179 dfrdg4 34180 bj-restuni 35195 bj-imdirco 35288 mptsnunlem 35436 relowlpssretop 35462 poimirlem27 35731 sstotbnd3 35861 an12i 36183 selconj 36185 eldmqsres 36348 inxpxrn 36448 rnxrnres 36452 refrelredund4 36675 islshpat 36958 islpln5 37476 islvol5 37520 cdleme0nex 38231 dicelval3 39121 mapdordlem1a 39575 ismnushort 41808 2reuimp 44494 elpglem3 46304 |
Copyright terms: Public domain | W3C validator |