![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3654 rmoan 3747 2reuswap 3754 2reuswap2 3755 reuxfrd 3756 reuind 3761 2rmoswap 3769 sbccomlemOLD 3878 indifdi 4299 elunirab 4926 axsepgfromrep 5299 opeliunxp 5755 elinxp 6038 resoprab 7550 elrnmpores 7570 ov6g 7596 opabex3d 7988 opabex3rd 7989 opabex3 7990 dfrecs3 8410 dfrecs3OLD 8411 oeeu 8639 xpassen 9104 omxpenlem 9111 dfac5lem2 10161 ltexprlem4 11076 2clim 15604 divalglem10 16435 bitsmod 16469 isssc 17867 eldmcoa 18118 issubrg 20587 isbasis2g 22970 tgval2 22978 is1stc2 23465 elflim2 23987 i1fres 25754 dvdsflsumcom 27245 vmasum 27274 logfac2 27275 axcontlem2 28994 fusgr2wsp2nb 30362 reuxfrdf 32518 1stpreima 32721 bnj849 34917 elima4 35756 elfuns 35896 dfrecs2 35931 dfrdg4 35932 bj-restuni 37079 bj-imdirco 37172 mptsnunlem 37320 relowlpssretop 37346 poimirlem27 37633 sstotbnd3 37762 an12i 38084 selconj 38086 eldmqsres 38268 inxpxrn 38376 rnxrnres 38380 refrelredund4 38616 islshpat 38998 islpln5 39517 islvol5 39561 cdleme0nex 40272 dicelval3 41162 mapdordlem1a 41616 tfsconcat0i 43334 ismnushort 44296 modelaxreplem2 44943 modelaxreplem3 44944 2reuimp 47064 elpglem3 48943 |
Copyright terms: Public domain | W3C validator |