![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
2 | 1 | bianass 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an12s 648 an4 655 3anan12 1096 ceqsrexv 3668 rmoan 3761 2reuswap 3768 2reuswap2 3769 reuxfrd 3770 reuind 3775 2rmoswap 3783 sbccomlemOLD 3892 indifdi 4313 elunirab 4946 axsepgfromrep 5315 opeliunxp 5767 elinxp 6048 resoprab 7568 elrnmpores 7588 ov6g 7614 opabex3d 8006 opabex3rd 8007 opabex3 8008 dfrecs3 8428 dfrecs3OLD 8429 oeeu 8659 xpassen 9132 omxpenlem 9139 dfac5lem2 10193 ltexprlem4 11108 2clim 15618 divalglem10 16450 bitsmod 16482 isssc 17881 eldmcoa 18132 issubrg 20599 isbasis2g 22976 tgval2 22984 is1stc2 23471 elflim2 23993 i1fres 25760 dvdsflsumcom 27249 vmasum 27278 logfac2 27279 axcontlem2 28998 fusgr2wsp2nb 30366 reuxfrdf 32519 1stpreima 32718 bnj849 34901 elima4 35739 elfuns 35879 dfrecs2 35914 dfrdg4 35915 bj-restuni 37063 bj-imdirco 37156 mptsnunlem 37304 relowlpssretop 37330 poimirlem27 37607 sstotbnd3 37736 an12i 38058 selconj 38060 eldmqsres 38243 inxpxrn 38351 rnxrnres 38355 refrelredund4 38591 islshpat 38973 islpln5 39492 islvol5 39536 cdleme0nex 40247 dicelval3 41137 mapdordlem1a 41591 tfsconcat0i 43307 ismnushort 44270 2reuimp 47030 elpglem3 48805 |
Copyright terms: Public domain | W3C validator |