| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3634 rmoan 3722 2reuswap 3729 2reuswap2 3730 reuxfrd 3731 reuind 3736 2rmoswap 3744 sbccomlemOLD 3845 indifdi 4269 elunirab 4898 axsepgfromrep 5264 opeliunxp 5721 elinxp 6006 resoprab 7523 elrnmpores 7543 ov6g 7569 opabex3d 7962 opabex3rd 7963 opabex3 7964 dfrecs3 8384 dfrecs3OLD 8385 oeeu 8613 xpassen 9078 omxpenlem 9085 dfac5lem2 10136 ltexprlem4 11051 2clim 15586 divalglem10 16419 bitsmod 16453 isssc 17831 eldmcoa 18076 issubrg 20529 isbasis2g 22884 tgval2 22892 is1stc2 23378 elflim2 23900 i1fres 25656 dvdsflsumcom 27148 vmasum 27177 logfac2 27178 axcontlem2 28890 fusgr2wsp2nb 30261 reuxfrdf 32418 1stpreima 32630 bnj849 34902 elima4 35739 elfuns 35879 dfrecs2 35914 dfrdg4 35915 bj-restuni 37061 bj-imdirco 37154 mptsnunlem 37302 relowlpssretop 37328 poimirlem27 37617 sstotbnd3 37746 an12i 38068 selconj 38070 eldmqsres 38251 inxpxrn 38359 rnxrnres 38363 refrelredund4 38599 islshpat 38981 islpln5 39500 islvol5 39544 cdleme0nex 40255 dicelval3 41145 mapdordlem1a 41599 tfsconcat0i 43316 ismnushort 44273 modelaxreplem2 44952 modelaxreplem3 44953 2reuimp 47092 elpglem3 49525 |
| Copyright terms: Public domain | W3C validator |