| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an12s 649 an4 656 3anan12 1095 ceqsrexv 3621 rmoan 3710 2reuswap 3717 2reuswap2 3718 reuxfrd 3719 reuind 3724 2rmoswap 3732 sbccomlemOLD 3833 indifdi 4257 elunirab 4886 axsepgfromrep 5249 opeliunxp 5705 elinxp 5990 resoprab 7507 elrnmpores 7527 ov6g 7553 opabex3d 7944 opabex3rd 7945 opabex3 7946 dfrecs3 8341 oeeu 8567 xpassen 9035 omxpenlem 9042 dfac5lem2 10077 ltexprlem4 10992 2clim 15538 divalglem10 16372 bitsmod 16406 isssc 17782 eldmcoa 18027 issubrg 20480 isbasis2g 22835 tgval2 22843 is1stc2 23329 elflim2 23851 i1fres 25606 dvdsflsumcom 27098 vmasum 27127 logfac2 27128 axcontlem2 28892 fusgr2wsp2nb 30263 reuxfrdf 32420 1stpreima 32630 bnj849 34915 elima4 35763 elfuns 35903 dfrecs2 35938 dfrdg4 35939 bj-restuni 37085 bj-imdirco 37178 mptsnunlem 37326 relowlpssretop 37352 poimirlem27 37641 sstotbnd3 37770 an12i 38092 selconj 38094 eldmqsres 38275 inxpxrn 38381 rnxrnres 38385 refrelredund4 38626 islshpat 39010 islpln5 39529 islvol5 39573 cdleme0nex 40284 dicelval3 41174 mapdordlem1a 41628 tfsconcat0i 43334 ismnushort 44290 modelaxreplem2 44969 modelaxreplem3 44970 2reuimp 47116 elpglem3 49702 |
| Copyright terms: Public domain | W3C validator |