Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > contrd | Structured version Visualization version GIF version |
Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
Ref | Expression |
---|---|
contrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
contrd.2 | ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
contrd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | contrd.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | contrd.2 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) | |
3 | 1, 2 | jcad 516 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ∧ ¬ 𝜒))) |
4 | pm2.24 124 | . . . . 5 ⊢ (𝜒 → (¬ 𝜒 → 𝜓)) | |
5 | 4 | imp 410 | . . . 4 ⊢ ((𝜒 ∧ ¬ 𝜒) → 𝜓) |
6 | 5 | imim2i 16 | . . 3 ⊢ ((¬ 𝜓 → (𝜒 ∧ ¬ 𝜒)) → (¬ 𝜓 → 𝜓)) |
7 | 6 | pm2.18d 127 | . 2 ⊢ ((¬ 𝜓 → (𝜒 ∧ ¬ 𝜒)) → 𝜓) |
8 | 3, 7 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mpobi123f 36057 mptbi12f 36061 ac6s6 36067 |
Copyright terms: Public domain | W3C validator |