Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  anabss7p1 Structured version   Visualization version   GIF version

Theorem anabss7p1 41112
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the 0th permutation did not exist in set.mm as anabss7 671. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
anabss7p1.1 (((𝜓𝜑) ∧ 𝜑) → 𝜒)
Assertion
Ref Expression
anabss7p1 ((𝜓𝜑) → 𝜒)

Proof of Theorem anabss7p1
StepHypRef Expression
1 anabss7p1.1 . 2 (((𝜓𝜑) ∧ 𝜑) → 𝜒)
21anabss3 673 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-an 399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator