|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anabss7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 19-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| anabss7.1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | 
| Ref | Expression | 
|---|---|
| anabss7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabss7.1 | . . 3 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) | 
| 3 | 2 | anabss4 667 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: anabsan2 674 syl2an23an 1424 funbrfv 6956 faclbnd5 14338 lcmcllem 16634 funbrafv2 47264 | 
| Copyright terms: Public domain | W3C validator |