MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss7 Structured version   Visualization version   GIF version

Theorem anabss7 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 19-Nov-2013.)
Hypothesis
Ref Expression
anabss7.1 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
Assertion
Ref Expression
anabss7 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabss7
StepHypRef Expression
1 anabss7.1 . . 3 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
21anassrs 467 . 2 (((𝜓𝜑) ∧ 𝜓) → 𝜒)
32anabss4 663 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  anabsan2  670  syl2an23an  1421  funbrfv  6814  faclbnd5  13993  lcmcllem  16282  funbrafv2  44690
  Copyright terms: Public domain W3C validator