| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabss3 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) |
| Ref | Expression |
|---|---|
| anabss3.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| anabss3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabss3.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | anasss 466 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabsan2 674 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3anidm23 1422 expclzlem 14107 plyrem 26302 loop1cycl 35083 anabss7p1 44752 modelac8prim 44954 |
| Copyright terms: Public domain | W3C validator |