MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss3 Structured version   Visualization version   GIF version

Theorem anabss3 672
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
Hypothesis
Ref Expression
anabss3.1 (((𝜑𝜓) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
anabss3 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabss3
StepHypRef Expression
1 anabss3.1 . . 3 (((𝜑𝜓) ∧ 𝜓) → 𝜒)
21anasss 467 . 2 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
32anabsan2 671 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  3anidm23  1420  expclzlem  13806  plyrem  25465  loop1cycl  33099  anabss7p1  42407
  Copyright terms: Public domain W3C validator