Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anc2l | Structured version Visualization version GIF version |
Description: Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 14-Jul-2013.) |
Ref | Expression |
---|---|
anc2l | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜑 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.42 544 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒)))) | |
2 | 1 | biimpi 215 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜑 ∧ 𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |