![]() |
Metamath
Proof Explorer Theorem List (p. 6 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | simplbi2com 501 | A deduction eliminating a conjunct, similar to simplbi2 499. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜓 → 𝜑)) | ||
Theorem | simpl2im 502 | Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
⊢ (𝜑 → (𝜓 ∧ 𝜒)) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | simplbiim 503 | Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | impel 504 | An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | ||
Theorem | mpan9 505 | Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → (𝜓 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | sylan9 506 | Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜒 → 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) | ||
Theorem | sylan9r 507 | Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜒 → 𝜏)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) | ||
Theorem | sylan9bb 508 | Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜒 ↔ 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) | ||
Theorem | sylan9bbr 509 | Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜒 ↔ 𝜏)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) | ||
Theorem | jca 510 | Deduce conjunction of the consequents of two implications ("join consequents with 'and'"). Deduction form of pm3.2 468 and pm3.2i 469. Its associated deduction is jcad 511. Equivalent to the natural deduction rule ∧ I (∧ introduction), see natded 30269. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jcad 511 | Deduction conjoining the consequents of two implications. Deduction form of jca 510 and double deduction form of pm3.2 468 and pm3.2i 469. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) | ||
Theorem | jca2 512 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) | ||
Theorem | jca31 513 | Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | ||
Theorem | jca32 514 | Join three consequents. (Contributed by FL, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | jcai 515 | Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jcab 516 | Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | ||
Theorem | pm4.76 517 | Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) | ||
Theorem | jctil 518 | Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 ⇒ ⊢ (𝜑 → (𝜒 ∧ 𝜓)) | ||
Theorem | jctir 519 | Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jccir 520 | Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 30275. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jccil 521 | Inference conjoining a consequent of a consequent to the left of the consequent in an implication. Remark: One can also prove this theorem using syl 17 and jca 510 (as done in jccir 520), which would be 4 bytes shorter, but one step longer than the current proof. (Proof modification is discouraged.) (Contributed by AV, 20-Aug-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → (𝜒 ∧ 𝜓)) | ||
Theorem | jctl 522 | Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
⊢ 𝜓 ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜑)) | ||
Theorem | jctr 523 | Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
⊢ 𝜓 ⇒ ⊢ (𝜑 → (𝜑 ∧ 𝜓)) | ||
Theorem | jctild 524 | Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) | ||
Theorem | jctird 525 | Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) | ||
Theorem | iba 526 | Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | ||
Theorem | ibar 527 | Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | ||
Theorem | biantru 528 | A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
⊢ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) | ||
Theorem | biantrur 529 | A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
⊢ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | biantrud 530 | A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | ||
Theorem | biantrurd 531 | A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | bianfi 532 | A wff conjoined with falsehood is false. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
⊢ ¬ 𝜑 ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) | ||
Theorem | bianfd 533 | A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | baib 534 | Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | ||
Theorem | baibr 535 | Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 ↔ 𝜑)) | ||
Theorem | rbaibr 536 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜓 ↔ 𝜑)) | ||
Theorem | rbaib 537 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | ||
Theorem | baibd 538 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) | ||
Theorem | rbaibd 539 | Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | ||
Theorem | bianabs 540 | Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
Theorem | pm5.44 541 | Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → 𝜒) ↔ (𝜑 → (𝜓 ∧ 𝜒)))) | ||
Theorem | pm5.42 542 | Theorem *5.42 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒)))) | ||
Theorem | ancl 543 | Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | ||
Theorem | anclb 544 | Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜑 ∧ 𝜓))) | ||
Theorem | ancr 545 | Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) | ||
Theorem | ancrb 546 | Conjoin antecedent to right of consequent. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜓 ∧ 𝜑))) | ||
Theorem | ancli 547 | Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜑 ∧ 𝜓)) | ||
Theorem | ancri 548 | Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜑)) | ||
Theorem | ancld 549 | Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) | ||
Theorem | ancrd 550 | Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) | ||
Theorem | impac 551 | Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜓)) | ||
Theorem | anc2l 552 | Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 14-Jul-2013.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜑 ∧ 𝜒)))) | ||
Theorem | anc2r 553 | Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜒 ∧ 𝜑)))) | ||
Theorem | anc2li 554 | Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) | ||
Theorem | anc2ri 555 | Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜑))) | ||
Theorem | pm4.71 556 | Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | ||
Theorem | pm4.71r 557 | Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | ||
Theorem | pm4.71i 558 | Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | pm4.71ri 559 | Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) | ||
Theorem | pm4.71d 560 | Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | pm4.71rd 561 | Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) | ||
Theorem | pm4.24 562 | Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | ||
Theorem | anidm 563 | Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | ||
Theorem | anidmdbi 564 | Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.) |
⊢ ((𝜑 → (𝜓 ∧ 𝜓)) ↔ (𝜑 → 𝜓)) | ||
Theorem | anidms 565 | Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
⊢ ((𝜑 ∧ 𝜑) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | imdistan 566 | Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | ||
Theorem | imdistani 567 | Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) | ||
Theorem | imdistanri 568 | Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) | ||
Theorem | imdistand 569 | Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | ||
Theorem | imdistanda 570 | Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | ||
Theorem | pm5.3 571 | Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | ||
Theorem | pm5.32 572 | Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) |
⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | ||
Theorem | pm5.32i 573 | Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) | ||
Theorem | pm5.32ri 574 | Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) | ||
Theorem | pm5.32d 575 | Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | ||
Theorem | pm5.32rd 576 | Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) | ||
Theorem | pm5.32da 577 | Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | ||
Theorem | sylan 578 | A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | sylanb 579 | A syllogism inference. (Contributed by NM, 18-May-1994.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | sylanbr 580 | A syllogism inference. (Contributed by NM, 18-May-1994.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | sylanbrc 581 | Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | syl2anc 582 | Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | syl2anc2 583 | Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | sylancl 584 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | sylancr 585 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝜓 & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | sylancom 586 | Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜒 ∧ 𝜓) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | sylanblc 587 | Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) ↔ 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | sylanblrc 588 | Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | syldan 589 | A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | sylbida 590 | A syllogism deduction. (Contributed by SN, 16-Jul-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | sylan2 591 | A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜃) | ||
Theorem | sylan2b 592 | A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜃) | ||
Theorem | sylan2br 593 | A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜃) | ||
Theorem | syl2an 594 | A double syllogism inference. For an implication-only version, see syl2im 40. (Contributed by NM, 31-Jan-1997.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜏 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜏) → 𝜃) | ||
Theorem | syl2anr 595 | A double syllogism inference. For an implication-only version, see syl2imc 41. (Contributed by NM, 17-Sep-2013.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜏 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜏 ∧ 𝜑) → 𝜃) | ||
Theorem | syl2anb 596 | A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜏) → 𝜃) | ||
Theorem | syl2anbr 597 | A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ (𝜒 ↔ 𝜏) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜏) → 𝜃) | ||
Theorem | sylancb 598 | A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | sylancbr 599 | A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | syldanl 600 | A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |