MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2r Structured version   Visualization version   GIF version

Theorem anc2r 554
Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
anc2r ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜒𝜑))))

Proof of Theorem anc2r
StepHypRef Expression
1 pm3.21 471 . . 3 (𝜑 → (𝜒 → (𝜒𝜑)))
21imim2d 57 . 2 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜒𝜑))))
32a2i 14 1 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜒𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  ssorduni  7606
  Copyright terms: Public domain W3C validator