|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anxordi | Structured version Visualization version GIF version | ||
| Description: Conjunction distributes over exclusive-or. In intuitionistic logic this assertion is also true, even though xordi 1019 does not necessarily hold, in part because the usual definition of xor is subtly different in intuitionistic logic. (Contributed by David A. Wheeler, 7-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| anxordi | ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xordi 1019 | . 2 ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 2 | df-xor 1512 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ∧ ¬ (𝜓 ↔ 𝜒))) | 
| 4 | df-xor 1512 | . 2 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1512 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |