Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anxordi | Structured version Visualization version GIF version |
Description: Conjunction distributes over exclusive-or. In intuitionistic logic this assertion is also true, even though xordi 1013 does not necessarily hold, in part because the usual definition of xor is subtly different in intuitionistic logic. (Contributed by David A. Wheeler, 7-Oct-2018.) |
Ref | Expression |
---|---|
anxordi | ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xordi 1013 | . 2 ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
2 | df-xor 1504 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
3 | 2 | anbi2i 622 | . 2 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ∧ ¬ (𝜓 ↔ 𝜒))) |
4 | df-xor 1504 | . 2 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-xor 1504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |