MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anxordi Structured version   Visualization version   GIF version

Theorem anxordi 1520
Description: Conjunction distributes over exclusive-or. In intuitionistic logic this assertion is also true, even though xordi 1013 does not necessarily hold, in part because the usual definition of xor is subtly different in intuitionistic logic. (Contributed by David A. Wheeler, 7-Oct-2018.)
Assertion
Ref Expression
anxordi ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ⊻ (𝜑𝜒)))

Proof of Theorem anxordi
StepHypRef Expression
1 xordi 1013 . 2 ((𝜑 ∧ ¬ (𝜓𝜒)) ↔ ¬ ((𝜑𝜓) ↔ (𝜑𝜒)))
2 df-xor 1504 . . 3 ((𝜓𝜒) ↔ ¬ (𝜓𝜒))
32anbi2i 622 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜑 ∧ ¬ (𝜓𝜒)))
4 df-xor 1504 . 2 (((𝜑𝜓) ⊻ (𝜑𝜒)) ↔ ¬ ((𝜑𝜓) ↔ (𝜑𝜒)))
51, 3, 43bitr4i 302 1 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ⊻ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-xor 1504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator