| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1544) and the constant false ⊥ (df-fal 1554), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1586), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1587), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1588), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1589). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1493). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1512 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1514 xorcom 1515 xorass 1516 excxor 1517 xor2 1518 xorneg2 1522 xorbi12i 1525 xorbi12d 1526 anxordi 1527 xorexmid 1528 truxortru 1586 truxorfal 1587 falxorfal 1589 hadbi 1599 elsymdifxor 4210 sadadd2lem2 16358 f1omvdco3 19359 bj-bixor 36624 wl-df3xor2 37502 wl-3xorbi 37506 wl-2xor 37516 tsxo3 38178 tsxo4 38179 oneptri 43289 ifpxorxorb 43543 or3or 44055 axorbtnotaiffb 46933 axorbciffatcxorb 46935 aisbnaxb 46941 abnotbtaxb 46945 abnotataxb 46946 afv2orxorb 47258 |
| Copyright terms: Public domain | W3C validator |