| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1585), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1586), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1587), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1588). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1492). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1511 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1513 xorcom 1514 xorass 1515 excxor 1516 xor2 1517 xorneg2 1521 xorbi12i 1524 xorbi12d 1525 anxordi 1526 xorexmid 1527 truxortru 1585 truxorfal 1586 falxorfal 1588 hadbi 1598 elsymdifxor 4223 sadadd2lem2 16420 f1omvdco3 19379 bj-bixor 36579 wl-df3xor2 37457 wl-3xorbi 37461 wl-2xor 37471 tsxo3 38133 tsxo4 38134 oneptri 43246 ifpxorxorb 43500 or3or 44012 axorbtnotaiffb 46904 axorbciffatcxorb 46906 aisbnaxb 46912 abnotbtaxb 46916 abnotataxb 46917 afv2orxorb 47229 |
| Copyright terms: Public domain | W3C validator |