| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1544) and the constant false ⊥ (df-fal 1554), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1586), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1587), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1588), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1589). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1493). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1512 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1514 xorcom 1515 xorass 1516 excxor 1517 xor2 1518 xorneg2 1522 xorbi12i 1525 xorbi12d 1526 anxordi 1527 xorexmid 1528 truxortru 1586 truxorfal 1587 falxorfal 1589 hadbi 1599 elsymdifxor 4209 sadadd2lem2 16363 f1omvdco3 19363 bj-bixor 36656 wl-df3xor2 37534 wl-3xorbi 37538 wl-2xor 37548 tsxo3 38199 tsxo4 38200 oneptri 43374 ifpxorxorb 43628 or3or 44140 axorbtnotaiffb 47027 axorbciffatcxorb 47029 aisbnaxb 47035 abnotbtaxb 47039 abnotataxb 47040 afv2orxorb 47352 |
| Copyright terms: Public domain | W3C validator |