| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1585), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1586), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1587), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1588). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1492). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1511 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1513 xorcom 1514 xorass 1515 excxor 1516 xor2 1517 xorneg2 1521 xorbi12i 1524 xorbi12d 1525 anxordi 1526 xorexmid 1527 truxortru 1585 truxorfal 1586 falxorfal 1588 hadbi 1598 elsymdifxor 4226 sadadd2lem2 16427 f1omvdco3 19386 bj-bixor 36586 wl-df3xor2 37464 wl-3xorbi 37468 wl-2xor 37478 tsxo3 38140 tsxo4 38141 oneptri 43253 ifpxorxorb 43507 or3or 44019 axorbtnotaiffb 46908 axorbciffatcxorb 46910 aisbnaxb 46916 abnotbtaxb 46920 abnotataxb 46921 afv2orxorb 47233 |
| Copyright terms: Public domain | W3C validator |