| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1585), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1586), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1587), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1588). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1492). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1511 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1513 xorcom 1514 xorass 1515 excxor 1516 xor2 1517 xorneg2 1521 xorbi12i 1524 xorbi12d 1525 anxordi 1526 xorexmid 1527 truxortru 1585 truxorfal 1586 falxorfal 1588 hadbi 1598 elsymdifxor 4235 sadadd2lem2 16467 f1omvdco3 19428 bj-bixor 36555 wl-df3xor2 37433 wl-3xorbi 37437 wl-2xor 37447 tsxo3 38109 tsxo4 38110 oneptri 43228 ifpxorxorb 43482 or3or 43994 axorbtnotaiffb 46880 axorbciffatcxorb 46882 aisbnaxb 46888 abnotbtaxb 46892 abnotataxb 46893 afv2orxorb 47205 |
| Copyright terms: Public domain | W3C validator |