| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version | ||
| Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1585), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1586), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1587), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1588). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1492). (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1511 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
| 5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnor 1513 xorcom 1514 xorass 1515 excxor 1516 xor2 1517 xorneg2 1521 xorbi12i 1524 xorbi12d 1525 anxordi 1526 xorexmid 1527 truxortru 1585 truxorfal 1586 falxorfal 1588 hadbi 1598 elsymdifxor 4240 sadadd2lem2 16474 f1omvdco3 19435 bj-bixor 36614 wl-df3xor2 37492 wl-3xorbi 37496 wl-2xor 37506 tsxo3 38168 tsxo4 38169 oneptri 43256 ifpxorxorb 43510 or3or 44022 axorbtnotaiffb 46912 axorbciffatcxorb 46914 aisbnaxb 46920 abnotbtaxb 46924 abnotataxb 46925 afv2orxorb 47237 |
| Copyright terms: Public domain | W3C validator |