![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1539) and the constant false ⊥ (df-fal 1549), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1581), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1582), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1583), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1584). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊼ (df-nan 1488). (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1507 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1509 xorcom 1510 xorass 1511 excxor 1512 xor2 1513 xorneg2 1517 xorbi12i 1520 xorbi12d 1521 anxordi 1522 xorexmid 1523 truxortru 1581 truxorfal 1582 falxorfal 1584 hadbi 1594 elsymdifxor 4265 sadadd2lem2 16483 f1omvdco3 19481 bj-bixor 36573 wl-df3xor2 37451 wl-3xorbi 37455 wl-2xor 37465 tsxo3 38125 tsxo4 38126 oneptri 43245 ifpxorxorb 43500 or3or 44012 axorbtnotaiffb 46852 axorbciffatcxorb 46854 aisbnaxb 46860 abnotbtaxb 46864 abnotataxb 46865 afv2orxorb 47177 |
Copyright terms: Public domain | W3C validator |