Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1584), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1585), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1586), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1587). Contrast with ∧ (df-an 396), ∨ (df-or 844), → (wi 4), and ⊼ (df-nan 1484). (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1503 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 205 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1505 xorcom 1506 xorcomOLD 1507 xorass 1508 excxor 1509 xor2 1510 xorneg2 1514 xorbi12i 1517 xorbi12iOLD 1518 xorbi12d 1519 anxordi 1520 xorexmid 1521 truxortru 1584 truxorfal 1585 falxorfal 1587 hadbi 1600 elsymdifxor 4180 sadadd2lem2 16085 f1omvdco3 18972 bj-bixor 34700 wl-df3xor2 35567 wl-3xorbi 35571 wl-2xor 35581 tsxo3 36224 tsxo4 36225 ifpxorxorb 41016 or3or 41520 axorbtnotaiffb 44285 axorbciffatcxorb 44287 aisbnaxb 44293 abnotbtaxb 44297 abnotataxb 44298 afv2orxorb 44607 |
Copyright terms: Public domain | W3C validator |