![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1540) and the constant false ⊥ (df-fal 1550), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1582), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1583), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1584), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1585). Contrast with ∧ (df-an 396), ∨ (df-or 847), → (wi 4), and ⊼ (df-nan 1489). (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1508 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 206 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1510 xorcom 1511 xorass 1512 excxor 1513 xor2 1514 xorneg2 1518 xorbi12i 1521 xorbi12d 1522 anxordi 1523 xorexmid 1524 truxortru 1582 truxorfal 1583 falxorfal 1585 hadbi 1595 elsymdifxor 4279 sadadd2lem2 16496 f1omvdco3 19491 bj-bixor 36557 wl-df3xor2 37435 wl-3xorbi 37439 wl-2xor 37449 tsxo3 38099 tsxo4 38100 oneptri 43218 ifpxorxorb 43473 or3or 43985 axorbtnotaiffb 46818 axorbciffatcxorb 46820 aisbnaxb 46826 abnotbtaxb 46830 abnotataxb 46831 afv2orxorb 47143 |
Copyright terms: Public domain | W3C validator |