![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1545) and the constant false ⊥ (df-fal 1555), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1587), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1588), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1589), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1590). Contrast with ∧ (df-an 398), ∨ (df-or 847), → (wi 4), and ⊼ (df-nan 1491). (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1510 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 205 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1512 xorcom 1513 xorcomOLD 1514 xorass 1515 excxor 1516 xor2 1517 xorneg2 1521 xorbi12i 1524 xorbi12iOLD 1525 xorbi12d 1526 anxordi 1527 xorexmid 1528 truxortru 1587 truxorfal 1588 falxorfal 1590 hadbi 1600 elsymdifxor 4250 sadadd2lem2 16391 f1omvdco3 19317 bj-bixor 35517 wl-df3xor2 36398 wl-3xorbi 36402 wl-2xor 36412 tsxo3 37055 tsxo4 37056 oneptri 42054 ifpxorxorb 42310 or3or 42822 axorbtnotaiffb 45661 axorbciffatcxorb 45663 aisbnaxb 45669 abnotbtaxb 45673 abnotataxb 45674 afv2orxorb 45984 |
Copyright terms: Public domain | W3C validator |