Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1584), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1585), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1586), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1587). Contrast with ∧ (df-an 397), ∨ (df-or 845), → (wi 4), and ⊼ (df-nan 1487). (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1506 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 205 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1508 xorcom 1509 xorcomOLD 1510 xorass 1511 excxor 1512 xor2 1513 xorneg2 1517 xorbi12i 1520 xorbi12iOLD 1521 xorbi12d 1522 anxordi 1523 xorexmid 1524 truxortru 1584 truxorfal 1585 falxorfal 1587 hadbi 1599 elsymdifxor 4183 sadadd2lem2 16157 f1omvdco3 19057 bj-bixor 34773 wl-df3xor2 35640 wl-3xorbi 35644 wl-2xor 35654 tsxo3 36297 tsxo4 36298 ifpxorxorb 41118 or3or 41631 axorbtnotaiffb 44398 axorbciffatcxorb 44400 aisbnaxb 44406 abnotbtaxb 44410 abnotataxb 44411 afv2orxorb 44720 |
Copyright terms: Public domain | W3C validator |