Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xordi | Structured version Visualization version GIF version |
Description: Conjunction distributes over exclusive-or, using ¬ (𝜑 ↔ 𝜓) to express exclusive-or. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. This is not necessarily true in intuitionistic logic, though anxordi 1520 does hold in it. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
xordi | ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 403 | . 2 ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 → (𝜓 ↔ 𝜒))) | |
2 | pm5.32 573 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | xchbinx 333 | 1 ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anxordi 1520 |
Copyright terms: Public domain | W3C validator |