|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xorbi12d | Structured version Visualization version GIF version | ||
| Description: Equality property for exclusive disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| xor12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| xor12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| xorbi12d | ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xor12d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | xor12d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | bibi12d 345 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) | 
| 4 | 3 | notbid 318 | . 2 ⊢ (𝜑 → (¬ (𝜓 ↔ 𝜃) ↔ ¬ (𝜒 ↔ 𝜏))) | 
| 5 | df-xor 1512 | . 2 ⊢ ((𝜓 ⊻ 𝜃) ↔ ¬ (𝜓 ↔ 𝜃)) | |
| 6 | df-xor 1512 | . 2 ⊢ ((𝜒 ⊻ 𝜏) ↔ ¬ (𝜒 ↔ 𝜏)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 | 
| This theorem is referenced by: hadbi123d 1595 cadbi123d 1610 | 
| Copyright terms: Public domain | W3C validator |