![]() |
Metamath
Proof Explorer Theorem List (p. 112 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30820) |
![]() (30821-32343) |
![]() (32344-48429) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulcmpblnr 11101 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
Theorem | prsrlem1 11102* | Decomposing signed reals into positive reals. Lemma for addsrpr 11105 and mulsrpr 11106. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
Theorem | addsrmo 11103* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
Theorem | mulsrmo 11104* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
Theorem | addsrpr 11105 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
Theorem | mulsrpr 11106 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
Theorem | ltsrpr 11107 | Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)) | ||
Theorem | gt0srpr 11108 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
Theorem | 0nsr 11109 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ R | ||
Theorem | 0r 11110 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 0R ∈ R | ||
Theorem | 1sr 11111 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 1R ∈ R | ||
Theorem | m1r 11112 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ -1R ∈ R | ||
Theorem | addclsr 11113 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
Theorem | mulclsr 11114 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
Theorem | dmaddsr 11115 | Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom +R = (R × R) | ||
Theorem | dmmulsr 11116 | Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom ·R = (R × R) | ||
Theorem | addcomsr 11117 | Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) | ||
Theorem | addasssr 11118 | Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) | ||
Theorem | mulcomsr 11119 | Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) | ||
Theorem | mulasssr 11120 | Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)) | ||
Theorem | distrsr 11121 | Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)) | ||
Theorem | m1p1sr 11122 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ (-1R +R 1R) = 0R | ||
Theorem | m1m1sr 11123 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (-1R ·R -1R) = 1R | ||
Theorem | ltsosr 11124 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.) |
⊢ <R Or R | ||
Theorem | 0lt1sr 11125 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ 0R <R 1R | ||
Theorem | 1ne0sr 11126 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ ¬ 1R = 0R | ||
Theorem | 0idsr 11127 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
Theorem | 1idsr 11128 | 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
Theorem | 00sr 11129 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
Theorem | ltasr 11130 | Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ (𝐶 ∈ R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
Theorem | pn0sr 11131 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
Theorem | negexsr 11132* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
Theorem | recexsrlem 11133* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | addgt0sr 11134 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
Theorem | mulgt0sr 11135 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
Theorem | sqgt0sr 11136 | The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | ||
Theorem | recexsr 11137* | The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | mappsrpr 11138 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) | ||
Theorem | ltpsrpr 11139 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵) | ||
Theorem | map2psrpr 11140* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴) | ||
Theorem | supsrlem 11141* | Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑤 ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Theorem | supsr 11142* | A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Syntax | cc 11143 | Class of complex numbers. |
class ℂ | ||
Syntax | cr 11144 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 11145 | Extend class notation to include the complex number 0. |
class 0 | ||
Syntax | c1 11146 | Extend class notation to include the complex number 1. |
class 1 | ||
Syntax | ci 11147 | Extend class notation to include the complex number i. |
class i | ||
Syntax | caddc 11148 | Addition on complex numbers. |
class + | ||
Syntax | cltrr 11149 | 'Less than' predicate (defined over real subset of complex numbers). |
class <ℝ | ||
Syntax | cmul 11150 | Multiplication on complex numbers. The token · is a center dot. |
class · | ||
Definition | df-c 11151 | Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11178. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℂ = (R × R) | ||
Definition | df-0 11152 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 0 = 〈0R, 0R〉 | ||
Definition | df-1 11153 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 1 = 〈1R, 0R〉 | ||
Definition | df-i 11154 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ i = 〈0R, 1R〉 | ||
Definition | df-r 11155 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℝ = (R × {0R}) | ||
Definition | df-add 11156* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
Definition | df-mul 11157* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
Definition | df-lt 11158* | Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr 11290. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
Theorem | opelcn 11159 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
Theorem | opelreal 11160 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
Theorem | elreal 11161* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elreal2 11162 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
Theorem | 0ncn 11163 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ ℂ | ||
Theorem | ltrelre 11164 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ ⊆ (ℝ × ℝ) | ||
Theorem | addcnsr 11165 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
Theorem | mulcnsr 11166 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
Theorem | eqresr 11167 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
Theorem | addresr 11168 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
Theorem | mulresr 11169 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
Theorem | ltresr 11170 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
Theorem | ltresr2 11171 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
Theorem | dfcnqs 11172 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8802, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11151), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ ℂ = ((R × R) / ◡ E ) | ||
Theorem | addcnsrec 11173 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11172 and mulcnsrec 11174. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
Theorem | mulcnsrec 11174 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8801,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11172.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10874. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
Theorem | axaddf 11175 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11181. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11224. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Theorem | axmulf 11176 | Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 11183. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 11225. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | axcnex 11177 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 13008), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5286 in later theorems by invoking Axiom ax-cnex 11201 instead of cnexALT 13008. Use cnex 11226 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | axresscn 11178 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 11202. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ ℝ ⊆ ℂ | ||
Theorem | ax1cn 11179 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11203. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
⊢ 1 ∈ ℂ | ||
Theorem | axicn 11180 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11204. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
⊢ i ∈ ℂ | ||
Theorem | axaddcl 11181 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11205 be used later. Instead, in most cases use addcl 11227. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | axaddrcl 11182 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11206 be used later. Instead, in most cases use readdcl 11228. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | axmulcl 11183 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 11207 be used later. Instead, in most cases use mulcl 11229. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | axmulrcl 11184 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11208 be used later. Instead, in most cases use remulcl 11230. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | axmulcom 11185 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11209 be used later. Instead, use mulcom 11231. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | axaddass 11186 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11210 be used later. Instead, use addass 11232. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | axmulass 11187 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 11211. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | axdistr 11188 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 11212 be used later. Instead, use adddi 11234. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | axi2m1 11189 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11213. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ ((i · i) + 1) = 0 | ||
Theorem | ax1ne0 11190 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11214. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
⊢ 1 ≠ 0 | ||
Theorem | ax1rid 11191 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11249, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11215. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
Theorem | axrnegex 11192* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11216. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Theorem | axrrecex 11193* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 11217. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Theorem | axcnre 11194* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 11218. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | axpre-lttri 11195 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11322. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11219. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Theorem | axpre-lttrn 11196 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11323. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11220. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Theorem | axpre-ltadd 11197 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11324. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 11221. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Theorem | axpre-mulgt0 11198 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11325. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11222. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Theorem | axpre-sup 11199* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11326. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11223. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Theorem | wuncn 11200 | A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ℂ ∈ 𝑈) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |