| Metamath
Proof Explorer Theorem List (p. 112 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ltresr2 11101 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
| Theorem | dfcnqs 11102 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8757, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11081), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ ℂ = ((R × R) / ◡ E ) | ||
| Theorem | addcnsrec 11103 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11102 and mulcnsrec 11104. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
| Theorem | mulcnsrec 11104 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8756,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11102.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10804. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
| Theorem | axaddf 11105 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11111. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11154. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axmulf 11106 | Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 11155 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 11159. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axcnex 11107 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12952), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5237 in later theorems by invoking Axiom ax-cnex 11131 instead of cnexALT 12952. Use cnex 11156 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| Theorem | axresscn 11108 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 11132. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| ⊢ ℝ ⊆ ℂ | ||
| Theorem | ax1cn 11109 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11133. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℂ | ||
| Theorem | axicn 11110 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11134. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
| ⊢ i ∈ ℂ | ||
| Theorem | axaddcl 11111 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11135 be used later. Instead, in most cases use addcl 11157. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | axaddrcl 11112 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11136 be used later. Instead, in most cases use readdcl 11158. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | axmulcl 11113 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 11137 be used later. Instead, in most cases use mulcl 11159. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | axmulrcl 11114 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11138 be used later. Instead, in most cases use remulcl 11160. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | axmulcom 11115 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11139 be used later. Instead, use mulcom 11161. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | axaddass 11116 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11140 be used later. Instead, use addass 11162. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | axmulass 11117 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 11141. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | axdistr 11118 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 11142 be used later. Instead, use adddi 11164. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | axi2m1 11119 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11143. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Theorem | ax1ne0 11120 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11144. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
| ⊢ 1 ≠ 0 | ||
| Theorem | ax1rid 11121 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11179, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11145. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Theorem | axrnegex 11122* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11146. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Theorem | axrrecex 11123* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 11147. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Theorem | axcnre 11124* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 11148. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | axpre-lttri 11125 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11252. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11149. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Theorem | axpre-lttrn 11126 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11253. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11150. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Theorem | axpre-ltadd 11127 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11254. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 11151. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Theorem | axpre-mulgt0 11128 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11255. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11152. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Theorem | axpre-sup 11129* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11256. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11153. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Theorem | wuncn 11130 | A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ℂ ∈ 𝑈) | ||
| Axiom | ax-cnex 11131 | The complex numbers form a set. This axiom is redundant - see cnexALT 12952- but we provide this axiom because the justification theorem axcnex 11107 does not use ax-rep 5237 even though the redundancy proof does. Proofs should normally use cnex 11156 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℂ ∈ V | ||
| Axiom | ax-resscn 11132 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, justified by Theorem axresscn 11108. (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℝ ⊆ ℂ | ||
| Axiom | ax-1cn 11133 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, justified by Theorem ax1cn 11109. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 1 ∈ ℂ | ||
| Axiom | ax-icn 11134 | i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11110. (Contributed by NM, 1-Mar-1995.) |
| ⊢ i ∈ ℂ | ||
| Axiom | ax-addcl 11135 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by Theorem axaddcl 11111. Proofs should normally use addcl 11157 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Axiom | ax-addrcl 11136 | Closure law for addition in the real subfield of complex numbers. Axiom 6 of 23 for real and complex numbers, justified by Theorem axaddrcl 11112. Proofs should normally use readdcl 11158 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcl 11137 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by Theorem axmulcl 11113. Proofs should normally use mulcl 11159 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Axiom | ax-mulrcl 11138 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, justified by Theorem axmulrcl 11114. Proofs should normally use remulcl 11160 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcom 11139 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by Theorem axmulcom 11115. Proofs should normally use mulcom 11161 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Axiom | ax-addass 11140 | Addition of complex numbers is associative. Axiom 9 of 22 for real and complex numbers, justified by Theorem axaddass 11116. Proofs should normally use addass 11162 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Axiom | ax-mulass 11141 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11117. Proofs should normally use mulass 11163 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Axiom | ax-distr 11142 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by Theorem axdistr 11118. Proofs should normally use adddi 11164 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Axiom | ax-i2m1 11143 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11119. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-1ne0 11144 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, justified by Theorem ax1ne0 11120. (Contributed by NM, 29-Jan-1995.) |
| ⊢ 1 ≠ 0 | ||
| Axiom | ax-1rid 11145 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11121. Weakened from the original axiom in the form of statement in mulrid 11179, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-rnegex 11146* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by Theorem axrnegex 11122. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-rrecex 11147* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex 11123. (Contributed by Eric Schmidt, 11-Apr-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Axiom | ax-cnre 11148* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, justified by Theorem axcnre 11124. For naming consistency, use cnre 11178 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-lttri 11149 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 11125. Note: The more general version for extended reals is axlttri 11252. Normally new proofs would use xrlttri 13106. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-pre-lttrn 11150 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by Theorem axpre-lttrn 11126. Note: The more general version for extended reals is axlttrn 11253. Normally new proofs would use lttr 11257. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-ltadd 11151 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd 11127. Normally new proofs would use axltadd 11254. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 11152 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 11128. Normally new proofs would use axmulgt0 11255. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-sup 11153* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by Theorem axpre-sup 11129. Note: Normally new proofs would use axsup 11256. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 11154 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first-order or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 11157 should be used. Note that uses of ax-addf 11154 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 11105. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 11155 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 11430
or
eff 16054. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 11159. Note that uses of ax-mulf 11155 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 11170.
This axiom is justified by Theorem axmulf 11106. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 11156 | Alias for ax-cnex 11131. See also cnexALT 12952. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 11157 | Alias for ax-addcl 11135, for naming consistency with addcli 11187. Use this theorem instead of ax-addcl 11135 or axaddcl 11111. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 11158 | Alias for ax-addrcl 11136, for naming consistency with readdcli 11196. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 11159 | Alias for ax-mulcl 11137, for naming consistency with mulcli 11188. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 11160 | Alias for ax-mulrcl 11138, for naming consistency with remulcli 11197. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 11161 | Alias for ax-mulcom 11139, for naming consistency with mulcomi 11189. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 11162 | Alias for ax-addass 11140, for naming consistency with addassi 11191. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 11163 | Alias for ax-mulass 11141, for naming consistency with mulassi 11192. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 11164 | Alias for ax-distr 11142, for naming consistency with adddii 11193. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 11165 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 11166 | The real numbers form a set. See also reexALT 12950. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 11167 | Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 11168 | Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpoaddf 11169* | Addition is an operation on complex numbers. Version of ax-addf 11154 using maps-to notation, proved from the axioms of set theory and ax-addcl 11135. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | mpomulf 11170* | Multiplication is an operation on complex numbers. Version of ax-mulf 11155 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11137. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | elimne0 11171 | Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 | ||
| Theorem | adddir 11172 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 11173 | Zero is a complex number. See also 0cnALT 11416. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 11174 | Zero is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 11175 | Zero is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1cnd 11176 | One is a complex number, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | 1ex 11177 | One is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| Theorem | cnre 11178* | Alias for ax-cnre 11148, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | mulrid 11179 | The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullid 11180 | Identity law for multiplication. See mulrid 11179 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | 1re 11181 | The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn 11133, by exploiting properties of the imaginary unit i. (Contributed by Eric Schmidt, 11-Apr-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | 1red 11182 | The number 1 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℝ) | ||
| Theorem | 0re 11183 | The number 0 is real. Remark: the first step could also be ax-icn 11134. See also 0reALT 11526. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | 0red 11184 | The number 0 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℝ) | ||
| Theorem | mulridi 11185 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
| Theorem | mullidi 11186 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
| Theorem | addcli 11187 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
| Theorem | mulcli 11188 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
| Theorem | mulcomi 11189 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | mulcomli 11190 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
| Theorem | addassi 11191 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | mulassi 11192 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | adddii 11193 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
| Theorem | adddiri 11194 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
| Theorem | recni 11195 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | readdcli 11196 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
| Theorem | remulcli 11197 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
| Theorem | mulridd 11198 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullidd 11199 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | addcld 11200 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |