![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-addcl | Structured version Visualization version GIF version |
Description: Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by Theorem axaddcl 11188. Proofs should normally use addcl 11234 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11150 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2105 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2105 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 11155 | . . . 4 class + | |
8 | 1, 4, 7 | co 7430 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2105 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
This axiom is referenced by: addcl 11234 |
Copyright terms: Public domain | W3C validator |