![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-addcl | Structured version Visualization version GIF version |
Description: Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by Theorem axaddcl 11148. Proofs should normally use addcl 11194 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11110 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2098 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2098 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 11115 | . . . 4 class + | |
8 | 1, 4, 7 | co 7405 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2098 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
This axiom is referenced by: addcl 11194 |
Copyright terms: Public domain | W3C validator |