| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axaddrcl | Structured version Visualization version GIF version | ||
| Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11136 be used later. Instead, in most cases use readdcl 11158. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 11091 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 11091 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | oveq1 7397 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = (𝐴 + 〈𝑦, 0R〉)) | |
| 4 | 3 | eleq1d 2814 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 〈𝑦, 0R〉) ∈ ℝ)) |
| 5 | oveq2 7398 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 + 〈𝑦, 0R〉) = (𝐴 + 𝐵)) | |
| 6 | 5 | eleq1d 2814 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
| 7 | addresr 11098 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = 〈(𝑥 +R 𝑦), 0R〉) | |
| 8 | addclsr 11043 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
| 9 | opelreal 11090 | . . . 4 ⊢ (〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ) |
| 11 | 7, 10 | eqeltrd 2829 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ) |
| 12 | 1, 2, 4, 6, 11 | 2gencl 3493 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 (class class class)co 7390 Rcnr 10825 0Rc0r 10826 +R cplr 10829 ℝcr 11074 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-1p 10942 df-plp 10943 df-ltp 10945 df-enr 11015 df-nr 11016 df-plr 11017 df-0r 11020 df-c 11081 df-r 11085 df-add 11086 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |