MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddrcl Structured version   Visualization version   GIF version

Theorem axaddrcl 10574
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 10598 be used later. Instead, in most cases use readdcl 10620. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axaddrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Proof of Theorem axaddrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10553 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10553 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 7163 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = (𝐴 + ⟨𝑦, 0R⟩))
43eleq1d 2897 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 7164 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 + ⟨𝑦, 0R⟩) = (𝐴 + 𝐵))
65eleq1d 2897 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ))
7 addresr 10560 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑥 +R 𝑦), 0R⟩)
8 addclsr 10505 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 𝑦) ∈ R)
9 opelreal 10552 . . . 4 (⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R)
108, 9sylibr 236 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2913 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3535 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4573  (class class class)co 7156  Rcnr 10287  0Rc0r 10288   +R cplr 10291  cr 10536   + caddc 10540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-1p 10404  df-plp 10405  df-ltp 10407  df-enr 10477  df-nr 10478  df-plr 10479  df-0r 10482  df-c 10543  df-r 10547  df-add 10548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator