Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axaddrcl | Structured version Visualization version GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 10982 be used later. Instead, in most cases use readdcl 11004. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 10937 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 10937 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 7314 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = (𝐴 + 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2821 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 7315 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 + 〈𝑦, 0R〉) = (𝐴 + 𝐵)) | |
6 | 5 | eleq1d 2821 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
7 | addresr 10944 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = 〈(𝑥 +R 𝑦), 0R〉) | |
8 | addclsr 10889 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
9 | opelreal 10936 | . . . 4 ⊢ (〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2837 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 3477 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 〈cop 4571 (class class class)co 7307 Rcnr 10671 0Rc0r 10672 +R cplr 10675 ℝcr 10920 + caddc 10924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-omul 8333 df-er 8529 df-ec 8531 df-qs 8535 df-ni 10678 df-pli 10679 df-mi 10680 df-lti 10681 df-plpq 10714 df-mpq 10715 df-ltpq 10716 df-enq 10717 df-nq 10718 df-erq 10719 df-plq 10720 df-mq 10721 df-1nq 10722 df-rq 10723 df-ltnq 10724 df-np 10787 df-1p 10788 df-plp 10789 df-ltp 10791 df-enr 10861 df-nr 10862 df-plr 10863 df-0r 10866 df-c 10927 df-r 10931 df-add 10932 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |