Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axaddrcl | Structured version Visualization version GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 10916 be used later. Instead, in most cases use readdcl 10938. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 10871 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 10871 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 7275 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = (𝐴 + 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2824 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 7276 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 + 〈𝑦, 0R〉) = (𝐴 + 𝐵)) | |
6 | 5 | eleq1d 2824 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
7 | addresr 10878 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = 〈(𝑥 +R 𝑦), 0R〉) | |
8 | addclsr 10823 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
9 | opelreal 10870 | . . . 4 ⊢ (〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2840 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 3470 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 〈cop 4572 (class class class)co 7268 Rcnr 10605 0Rc0r 10606 +R cplr 10609 ℝcr 10854 + caddc 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ec 8474 df-qs 8478 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-mq 10655 df-1nq 10656 df-rq 10657 df-ltnq 10658 df-np 10721 df-1p 10722 df-plp 10723 df-ltp 10725 df-enr 10795 df-nr 10796 df-plr 10797 df-0r 10800 df-c 10861 df-r 10865 df-add 10866 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |