![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axaddrcl | Structured version Visualization version GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11207 be used later. Instead, in most cases use readdcl 11229. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11162 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11162 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | oveq1 7433 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = (𝐴 + ⟨𝑦, 0R⟩)) | |
4 | 3 | eleq1d 2814 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ)) |
5 | oveq2 7434 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 + ⟨𝑦, 0R⟩) = (𝐴 + 𝐵)) | |
6 | 5 | eleq1d 2814 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
7 | addresr 11169 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑥 +R 𝑦), 0R⟩) | |
8 | addclsr 11114 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
9 | opelreal 11161 | . . . 4 ⊢ (⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → ⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ) |
11 | 7, 10 | eqeltrd 2829 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 3516 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⟨cop 4638 (class class class)co 7426 Rcnr 10896 0Rc0r 10897 +R cplr 10900 ℝcr 11145 + caddc 11149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-omul 8498 df-er 8731 df-ec 8733 df-qs 8737 df-ni 10903 df-pli 10904 df-mi 10905 df-lti 10906 df-plpq 10939 df-mpq 10940 df-ltpq 10941 df-enq 10942 df-nq 10943 df-erq 10944 df-plq 10945 df-mq 10946 df-1nq 10947 df-rq 10948 df-ltnq 10949 df-np 11012 df-1p 11013 df-plp 11014 df-ltp 11016 df-enr 11086 df-nr 11087 df-plr 11088 df-0r 11091 df-c 11152 df-r 11156 df-add 11157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |