MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddrcl Structured version   Visualization version   GIF version

Theorem axaddrcl 11112
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11136 be used later. Instead, in most cases use readdcl 11158. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axaddrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Proof of Theorem axaddrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11091 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11091 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 7397 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = (𝐴 + ⟨𝑦, 0R⟩))
43eleq1d 2814 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 7398 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 + ⟨𝑦, 0R⟩) = (𝐴 + 𝐵))
65eleq1d 2814 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ))
7 addresr 11098 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑥 +R 𝑦), 0R⟩)
8 addclsr 11043 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 𝑦) ∈ R)
9 opelreal 11090 . . . 4 (⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R)
108, 9sylibr 234 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2829 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3493 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598  (class class class)co 7390  Rcnr 10825  0Rc0r 10826   +R cplr 10829  cr 11074   + caddc 11078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-plp 10943  df-ltp 10945  df-enr 11015  df-nr 11016  df-plr 11017  df-0r 11020  df-c 11081  df-r 11085  df-add 11086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator