| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-frege28 | Structured version Visualization version GIF version | ||
| Description: Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-frege28 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | wps | . 2 wff 𝜓 | |
| 3 | 2 | wn 3 | . . 3 wff ¬ 𝜓 |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 3, 4 | wi 4 | . 2 wff (¬ 𝜓 → ¬ 𝜑) |
| 6 | 1, 2, 5 | bj-0 36543 | 1 wff ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: frege29 43844 frege33 43849 frege54cor0a 43876 |
| Copyright terms: Public domain | W3C validator |