| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege54cor0a | Structured version Visualization version GIF version | ||
| Description: Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege54cor0a | ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege28 43788 | . . . 4 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | anim2i 617 | . . 3 ⊢ (((𝜓 → 𝜑) ∧ (𝜑 → 𝜓)) → ((𝜓 → 𝜑) ∧ (¬ 𝜓 → ¬ 𝜑))) |
| 3 | con4 113 | . . . 4 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 4 | 3 | anim2i 617 | . . 3 ⊢ (((𝜓 → 𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)) → ((𝜓 → 𝜑) ∧ (𝜑 → 𝜓))) |
| 5 | 2, 4 | impbii 209 | . 2 ⊢ (((𝜓 → 𝜑) ∧ (𝜑 → 𝜓)) ↔ ((𝜓 → 𝜑) ∧ (¬ 𝜓 → ¬ 𝜑))) |
| 6 | dfbi2 474 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ ((𝜓 → 𝜑) ∧ (𝜑 → 𝜓))) | |
| 7 | dfifp2 1064 | . 2 ⊢ (if-(𝜓, 𝜑, ¬ 𝜑) ↔ ((𝜓 → 𝜑) ∧ (¬ 𝜓 → ¬ 𝜑))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege28 43788 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: frege54cor1a 43822 frege55lem1a 43824 frege55lem2a 43825 |
| Copyright terms: Public domain | W3C validator |