Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege54cor0a Structured version   Visualization version   GIF version

Theorem frege54cor0a 41471
Description: Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege54cor0a ((𝜓𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑))

Proof of Theorem frege54cor0a
StepHypRef Expression
1 ax-frege28 41438 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21anim2i 617 . . 3 (((𝜓𝜑) ∧ (𝜑𝜓)) → ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
3 con4 113 . . . 4 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
43anim2i 617 . . 3 (((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)) → ((𝜓𝜑) ∧ (𝜑𝜓)))
52, 4impbii 208 . 2 (((𝜓𝜑) ∧ (𝜑𝜓)) ↔ ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
6 dfbi2 475 . 2 ((𝜓𝜑) ↔ ((𝜓𝜑) ∧ (𝜑𝜓)))
7 dfifp2 1062 . 2 (if-(𝜓, 𝜑, ¬ 𝜑) ↔ ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
85, 6, 73bitr4i 303 1 ((𝜓𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege28 41438
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  frege54cor1a  41472  frege55lem1a  41474  frege55lem2a  41475
  Copyright terms: Public domain W3C validator