![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3 | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
Ref | Expression |
---|---|
con3 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | con3d 152 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65 193 con34b 316 nic-ax 1670 nic-axALT 1671 axc10 2388 camestres 2671 baroco 2674 rexim 3085 falseral0 4522 nrhmzr 20554 cbvex1v 35067 dfon2lem9 35773 hbntg 35787 naim1 36372 naim2 36373 lukshef-ax2 36398 bj-eximALT 36624 bj-axc10v 36776 ax12indn 38925 cvrexchlem 39402 cvratlem 39404 axfrege28 43819 vk15.4j 44526 tratrb 44534 hbntal 44551 tratrbVD 44859 con5VD 44898 vk15.4jVD 44912 |
Copyright terms: Public domain | W3C validator |