| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3 | Structured version Visualization version GIF version | ||
| Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| con3 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | con3d 152 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.65 193 con34b 316 nic-ax 1674 nic-axALT 1675 axc10 2387 camestres 2670 baroco 2673 rexim 3074 falseral0OLD 4465 nrhmzr 20456 cbvex1v 35109 antnestlaw2 35759 dfon2lem9 35856 hbntg 35870 naim1 36456 naim2 36457 lukshef-ax2 36482 bj-eximALT 36708 bj-axc10v 36860 ax12indn 39065 cvrexchlem 39541 cvratlem 39543 axfrege28 43949 vk15.4j 44648 tratrb 44656 hbntal 44673 tratrbVD 44980 con5VD 45019 vk15.4jVD 45033 |
| Copyright terms: Public domain | W3C validator |