Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3 | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
Ref | Expression |
---|---|
con3 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | con3d 152 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65 192 con34b 316 nic-ax 1680 nic-axALT 1681 axc10 2387 camestres 2676 baroco 2679 rexim 3171 falseral0 4456 dfon2lem9 33776 hbntg 33790 naim1 34587 naim2 34588 lukshef-ax2 34613 bj-eximALT 34831 bj-axc10v 34984 ax12indn 36966 cvrexchlem 37442 cvratlem 37444 axfrege28 41419 vk15.4j 42130 tratrb 42138 hbntal 42155 tratrbVD 42463 con5VD 42502 vk15.4jVD 42516 nrhmzr 45410 |
Copyright terms: Public domain | W3C validator |