MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3 Structured version   Visualization version   GIF version

Theorem con3 153
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21con3d 152 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65  192  con34b  315  nic-ax  1677  nic-axALT  1678  axc10  2385  camestres  2674  baroco  2677  rexim  3168  falseral0  4447  dfon2lem9  33673  hbntg  33687  naim1  34505  naim2  34506  lukshef-ax2  34531  bj-eximALT  34749  bj-axc10v  34902  ax12indn  36884  cvrexchlem  37360  cvratlem  37362  axfrege28  41326  vk15.4j  42037  tratrb  42045  hbntal  42062  tratrbVD  42370  con5VD  42409  vk15.4jVD  42423  nrhmzr  45319
  Copyright terms: Public domain W3C validator