MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3 Structured version   Visualization version   GIF version

Theorem con3 153
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21con3d 152 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65  192  con34b  316  nic-ax  1680  nic-axALT  1681  axc10  2387  camestres  2676  baroco  2679  rexim  3171  falseral0  4456  dfon2lem9  33776  hbntg  33790  naim1  34587  naim2  34588  lukshef-ax2  34613  bj-eximALT  34831  bj-axc10v  34984  ax12indn  36966  cvrexchlem  37442  cvratlem  37444  axfrege28  41419  vk15.4j  42130  tratrb  42138  hbntal  42155  tratrbVD  42463  con5VD  42502  vk15.4jVD  42516  nrhmzr  45410
  Copyright terms: Public domain W3C validator