Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3 | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
Ref | Expression |
---|---|
con3 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | con3d 152 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65 192 con34b 315 nic-ax 1677 nic-axALT 1678 axc10 2385 camestres 2674 baroco 2677 rexim 3168 falseral0 4447 dfon2lem9 33673 hbntg 33687 naim1 34505 naim2 34506 lukshef-ax2 34531 bj-eximALT 34749 bj-axc10v 34902 ax12indn 36884 cvrexchlem 37360 cvratlem 37362 axfrege28 41326 vk15.4j 42037 tratrb 42045 hbntal 42062 tratrbVD 42370 con5VD 42409 vk15.4jVD 42423 nrhmzr 45319 |
Copyright terms: Public domain | W3C validator |