Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege29 Structured version   Visualization version   GIF version

Theorem frege29 41301
Description: Closed form of con3d 155. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege29 ((𝜑 → (𝜓𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓)))

Proof of Theorem frege29
StepHypRef Expression
1 ax-frege28 41300 . 2 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
2 frege5 41270 . 2 (((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓)) → ((𝜑 → (𝜓𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41260  ax-frege2 41261  ax-frege28 41300
This theorem is referenced by:  frege30  41302
  Copyright terms: Public domain W3C validator