Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege33 Structured version   Visualization version   GIF version

Theorem frege33 41333
Description: If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege33 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))

Proof of Theorem frege33
StepHypRef Expression
1 ax-frege28 41327 . 2 ((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑))
2 frege32 41332 . 2 (((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
31, 2ax-mp 5 1 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege28 41327  ax-frege31 41331
This theorem is referenced by:  frege34  41334  frege46  41347
  Copyright terms: Public domain W3C validator