| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-mulass | Structured version Visualization version GIF version | ||
| Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11117. Proofs should normally use mulass 11163 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11073 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2109 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | cmul 11080 | . . . . 5 class · | |
| 10 | 1, 4, 9 | co 7390 | . . . 4 class (𝐴 · 𝐵) |
| 11 | 10, 6, 9 | co 7390 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
| 12 | 4, 6, 9 | co 7390 | . . . 4 class (𝐵 · 𝐶) |
| 13 | 1, 12, 9 | co 7390 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
| 14 | 11, 13 | wceq 1540 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulass 11163 |
| Copyright terms: Public domain | W3C validator |