| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-mulass | Structured version Visualization version GIF version | ||
| Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11045. Proofs should normally use mulass 11091 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11001 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2111 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2111 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2111 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | cmul 11008 | . . . . 5 class · | |
| 10 | 1, 4, 9 | co 7346 | . . . 4 class (𝐴 · 𝐵) |
| 11 | 10, 6, 9 | co 7346 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
| 12 | 4, 6, 9 | co 7346 | . . . 4 class (𝐵 · 𝐶) |
| 13 | 1, 12, 9 | co 7346 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
| 14 | 11, 13 | wceq 1541 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulass 11091 |
| Copyright terms: Public domain | W3C validator |