![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-mulass | Structured version Visualization version GIF version |
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11226. Proofs should normally use mulass 11272 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11182 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2108 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 1087 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | cmul 11189 | . . . . 5 class · | |
10 | 1, 4, 9 | co 7448 | . . . 4 class (𝐴 · 𝐵) |
11 | 10, 6, 9 | co 7448 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
12 | 4, 6, 9 | co 7448 | . . . 4 class (𝐵 · 𝐶) |
13 | 1, 12, 9 | co 7448 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
14 | 11, 13 | wceq 1537 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulass 11272 |
Copyright terms: Public domain | W3C validator |