![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-mulass | Structured version Visualization version GIF version |
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11194. Proofs should normally use mulass 11240 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11150 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2105 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2105 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2105 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | cmul 11157 | . . . . 5 class · | |
10 | 1, 4, 9 | co 7430 | . . . 4 class (𝐴 · 𝐵) |
11 | 10, 6, 9 | co 7430 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
12 | 4, 6, 9 | co 7430 | . . . 4 class (𝐵 · 𝐶) |
13 | 1, 12, 9 | co 7430 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
14 | 11, 13 | wceq 1536 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulass 11240 |
Copyright terms: Public domain | W3C validator |