| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11083, for naming consistency with mulassi 11134. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11083 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 · cmul 11022 |
| This theorem was proved from axioms: ax-mulass 11083 |
| This theorem is referenced by: mulrid 11121 mulassi 11134 mulassd 11146 mul12 11289 mul32 11290 mul31 11291 mul4 11292 00id 11299 divass 11805 cju 12132 div4p1lem1div2 12387 xmulasslem3 13192 mulbinom2 14137 sqoddm1div8 14157 faclbnd5 14212 bcval5 14232 remim 15031 imval2 15065 01sqrexlem7 15162 sqrtneglem 15180 sqreulem 15274 clim2div 15803 prodfmul 15804 prodmolem3 15847 sinhval 16070 coshval 16071 absefib 16114 efieq1re 16115 muldvds1 16198 muldvds2 16199 dvdsmulc 16201 dvdsmulcr 16203 dvdstr 16212 eulerthlem2 16700 oddprmdvds 16822 ablfacrp 19988 cncrng 21334 cncrngOLD 21335 nmoleub2lem3 25062 cnlmod 25087 itg2mulc 25695 abssinper 26477 sinasin 26846 dchrabl 27212 bposlem6 27247 bposlem9 27250 2sqlem6 27381 rpvmasum2 27470 cncvcOLD 30584 ipasslem5 30836 ipasslem11 30841 dvasin 37817 facp2 42309 pellexlem2 42987 jm2.25 43156 expgrowth 44492 2zrngmsgrp 48415 nn0sumshdiglemA 48781 |
| Copyright terms: Public domain | W3C validator |