| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11200, for naming consistency with mulassi 11251. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11200 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 · cmul 11139 |
| This theorem was proved from axioms: ax-mulass 11200 |
| This theorem is referenced by: mulrid 11238 mulassi 11251 mulassd 11263 mul12 11405 mul32 11406 mul31 11407 mul4 11408 00id 11415 divass 11919 cju 12241 div4p1lem1div2 12501 xmulasslem3 13307 mulbinom2 14246 sqoddm1div8 14266 faclbnd5 14321 bcval5 14341 remim 15141 imval2 15175 01sqrexlem7 15272 sqrtneglem 15290 sqreulem 15383 clim2div 15910 prodfmul 15911 prodmolem3 15954 sinhval 16177 coshval 16178 absefib 16221 efieq1re 16222 muldvds1 16305 muldvds2 16306 dvdsmulc 16308 dvdsmulcr 16310 dvdstr 16318 eulerthlem2 16806 oddprmdvds 16928 ablfacrp 20054 cncrng 21356 cncrngOLD 21357 nmoleub2lem3 25071 cnlmod 25096 itg2mulc 25705 abssinper 26487 sinasin 26856 dchrabl 27222 bposlem6 27257 bposlem9 27260 2sqlem6 27391 rpvmasum2 27480 cncvcOLD 30569 ipasslem5 30821 ipasslem11 30826 dvasin 37733 facp2 42161 pellexlem2 42828 jm2.25 42998 expgrowth 44334 2zrngmsgrp 48208 nn0sumshdiglemA 48579 |
| Copyright terms: Public domain | W3C validator |