| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11067, for naming consistency with mulassi 11118. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11067 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 · cmul 11006 |
| This theorem was proved from axioms: ax-mulass 11067 |
| This theorem is referenced by: mulrid 11105 mulassi 11118 mulassd 11130 mul12 11273 mul32 11274 mul31 11275 mul4 11276 00id 11283 divass 11789 cju 12116 div4p1lem1div2 12371 xmulasslem3 13180 mulbinom2 14125 sqoddm1div8 14145 faclbnd5 14200 bcval5 14220 remim 15019 imval2 15053 01sqrexlem7 15150 sqrtneglem 15168 sqreulem 15262 clim2div 15791 prodfmul 15792 prodmolem3 15835 sinhval 16058 coshval 16059 absefib 16102 efieq1re 16103 muldvds1 16186 muldvds2 16187 dvdsmulc 16189 dvdsmulcr 16191 dvdstr 16200 eulerthlem2 16688 oddprmdvds 16810 ablfacrp 19975 cncrng 21320 cncrngOLD 21321 nmoleub2lem3 25037 cnlmod 25062 itg2mulc 25670 abssinper 26452 sinasin 26821 dchrabl 27187 bposlem6 27222 bposlem9 27225 2sqlem6 27356 rpvmasum2 27445 cncvcOLD 30555 ipasslem5 30807 ipasslem11 30812 dvasin 37744 facp2 42176 pellexlem2 42863 jm2.25 43032 expgrowth 44368 2zrngmsgrp 48284 nn0sumshdiglemA 48651 |
| Copyright terms: Public domain | W3C validator |