![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 11218, for naming consistency with mulassi 11269. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 11218 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 |
This theorem was proved from axioms: ax-mulass 11218 |
This theorem is referenced by: mulrid 11256 mulassi 11269 mulassd 11281 mul12 11423 mul32 11424 mul31 11425 mul4 11426 00id 11433 divass 11937 cju 12259 div4p1lem1div2 12518 xmulasslem3 13324 mulbinom2 14258 sqoddm1div8 14278 faclbnd5 14333 bcval5 14353 remim 15152 imval2 15186 01sqrexlem7 15283 sqrtneglem 15301 sqreulem 15394 clim2div 15921 prodfmul 15922 prodmolem3 15965 sinhval 16186 coshval 16187 absefib 16230 efieq1re 16231 muldvds1 16314 muldvds2 16315 dvdsmulc 16317 dvdsmulcr 16319 dvdstr 16327 eulerthlem2 16815 oddprmdvds 16936 ablfacrp 20100 cncrng 21418 cncrngOLD 21419 nmoleub2lem3 25161 cnlmod 25186 itg2mulc 25796 abssinper 26577 sinasin 26946 dchrabl 27312 bposlem6 27347 bposlem9 27350 2sqlem6 27481 rpvmasum2 27570 cncvcOLD 30611 ipasslem5 30863 ipasslem11 30868 dvasin 37690 facp2 42124 fac2xp3 42220 pellexlem2 42817 jm2.25 42987 expgrowth 44330 2zrngmsgrp 48096 nn0sumshdiglemA 48468 |
Copyright terms: Public domain | W3C validator |