| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11110, for naming consistency with mulassi 11161. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11110 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 · cmul 11049 |
| This theorem was proved from axioms: ax-mulass 11110 |
| This theorem is referenced by: mulrid 11148 mulassi 11161 mulassd 11173 mul12 11315 mul32 11316 mul31 11317 mul4 11318 00id 11325 divass 11831 cju 12158 div4p1lem1div2 12413 xmulasslem3 13222 mulbinom2 14164 sqoddm1div8 14184 faclbnd5 14239 bcval5 14259 remim 15059 imval2 15093 01sqrexlem7 15190 sqrtneglem 15208 sqreulem 15302 clim2div 15831 prodfmul 15832 prodmolem3 15875 sinhval 16098 coshval 16099 absefib 16142 efieq1re 16143 muldvds1 16226 muldvds2 16227 dvdsmulc 16229 dvdsmulcr 16231 dvdstr 16240 eulerthlem2 16728 oddprmdvds 16850 ablfacrp 19974 cncrng 21276 cncrngOLD 21277 nmoleub2lem3 24991 cnlmod 25016 itg2mulc 25624 abssinper 26406 sinasin 26775 dchrabl 27141 bposlem6 27176 bposlem9 27179 2sqlem6 27310 rpvmasum2 27399 cncvcOLD 30485 ipasslem5 30737 ipasslem11 30742 dvasin 37671 facp2 42104 pellexlem2 42791 jm2.25 42961 expgrowth 44297 2zrngmsgrp 48214 nn0sumshdiglemA 48581 |
| Copyright terms: Public domain | W3C validator |