Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 10937, for naming consistency with mulassi 10986. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 10937 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 · cmul 10876 |
This theorem was proved from axioms: ax-mulass 10937 |
This theorem is referenced by: mulid1 10973 mulassi 10986 mulassd 10998 mul12 11140 mul32 11141 mul31 11142 mul4 11143 00id 11150 divass 11651 cju 11969 div4p1lem1div2 12228 xmulasslem3 13020 mulbinom2 13938 sqoddm1div8 13958 faclbnd5 14012 bcval5 14032 remim 14828 imval2 14862 sqrlem7 14960 sqrtneglem 14978 sqreulem 15071 clim2div 15601 prodfmul 15602 prodmolem3 15643 sinhval 15863 coshval 15864 absefib 15907 efieq1re 15908 muldvds1 15990 muldvds2 15991 dvdsmulc 15993 dvdsmulcr 15995 dvdstr 16003 eulerthlem2 16483 oddprmdvds 16604 ablfacrp 19669 cncrng 20619 nmoleub2lem3 24278 cnlmod 24303 itg2mulc 24912 abssinper 25677 sinasin 26039 dchrabl 26402 bposlem6 26437 bposlem9 26440 2sqlem6 26571 rpvmasum2 26660 cncvcOLD 28945 ipasslem5 29197 ipasslem11 29202 dvasin 35861 facp2 40099 fac2xp3 40160 pellexlem2 40652 jm2.25 40821 expgrowth 41953 2zrngmsgrp 45505 nn0sumshdiglemA 45965 |
Copyright terms: Public domain | W3C validator |