Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 10938, for naming consistency with mulassi 10987. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 10938 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 · cmul 10877 |
This theorem was proved from axioms: ax-mulass 10938 |
This theorem is referenced by: mulid1 10974 mulassi 10987 mulassd 10999 mul12 11140 mul32 11141 mul31 11142 mul4 11143 00id 11150 divass 11651 cju 11969 div4p1lem1div2 12228 xmulasslem3 13019 mulbinom2 13936 sqoddm1div8 13956 faclbnd5 14010 bcval5 14030 remim 14826 imval2 14860 sqrlem7 14958 sqrtneglem 14976 sqreulem 15069 clim2div 15599 prodfmul 15600 prodmolem3 15641 sinhval 15861 coshval 15862 absefib 15905 efieq1re 15906 muldvds1 15988 muldvds2 15989 dvdsmulc 15991 dvdsmulcr 15993 dvdstr 16001 eulerthlem2 16481 oddprmdvds 16602 ablfacrp 19667 cncrng 20617 nmoleub2lem3 24276 cnlmod 24301 itg2mulc 24910 abssinper 25675 sinasin 26037 dchrabl 26400 bposlem6 26435 bposlem9 26438 2sqlem6 26569 rpvmasum2 26658 cncvcOLD 28941 ipasslem5 29193 ipasslem11 29198 dvasin 35857 facp2 40096 fac2xp3 40157 pellexlem2 40649 jm2.25 40818 expgrowth 41923 2zrngmsgrp 45474 nn0sumshdiglemA 45934 |
Copyright terms: Public domain | W3C validator |