| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11134, for naming consistency with mulassi 11185. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11134 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mulass 11134 |
| This theorem is referenced by: mulrid 11172 mulassi 11185 mulassd 11197 mul12 11339 mul32 11340 mul31 11341 mul4 11342 00id 11349 divass 11855 cju 12182 div4p1lem1div2 12437 xmulasslem3 13246 mulbinom2 14188 sqoddm1div8 14208 faclbnd5 14263 bcval5 14283 remim 15083 imval2 15117 01sqrexlem7 15214 sqrtneglem 15232 sqreulem 15326 clim2div 15855 prodfmul 15856 prodmolem3 15899 sinhval 16122 coshval 16123 absefib 16166 efieq1re 16167 muldvds1 16250 muldvds2 16251 dvdsmulc 16253 dvdsmulcr 16255 dvdstr 16264 eulerthlem2 16752 oddprmdvds 16874 ablfacrp 19998 cncrng 21300 cncrngOLD 21301 nmoleub2lem3 25015 cnlmod 25040 itg2mulc 25648 abssinper 26430 sinasin 26799 dchrabl 27165 bposlem6 27200 bposlem9 27203 2sqlem6 27334 rpvmasum2 27423 cncvcOLD 30512 ipasslem5 30764 ipasslem11 30769 dvasin 37698 facp2 42131 pellexlem2 42818 jm2.25 42988 expgrowth 44324 2zrngmsgrp 48241 nn0sumshdiglemA 48608 |
| Copyright terms: Public domain | W3C validator |