![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 11176, for naming consistency with mulassi 11225. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 11176 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1088 = wceq 1542 โ wcel 2107 (class class class)co 7409 โcc 11108 ยท cmul 11115 |
This theorem was proved from axioms: ax-mulass 11176 |
This theorem is referenced by: mulrid 11212 mulassi 11225 mulassd 11237 mul12 11379 mul32 11380 mul31 11381 mul4 11382 00id 11389 divass 11890 cju 12208 div4p1lem1div2 12467 xmulasslem3 13265 mulbinom2 14186 sqoddm1div8 14206 faclbnd5 14258 bcval5 14278 remim 15064 imval2 15098 01sqrexlem7 15195 sqrtneglem 15213 sqreulem 15306 clim2div 15835 prodfmul 15836 prodmolem3 15877 sinhval 16097 coshval 16098 absefib 16141 efieq1re 16142 muldvds1 16224 muldvds2 16225 dvdsmulc 16227 dvdsmulcr 16229 dvdstr 16237 eulerthlem2 16715 oddprmdvds 16836 ablfacrp 19936 cncrng 20966 nmoleub2lem3 24631 cnlmod 24656 itg2mulc 25265 abssinper 26030 sinasin 26394 dchrabl 26757 bposlem6 26792 bposlem9 26795 2sqlem6 26926 rpvmasum2 27015 cncvcOLD 29836 ipasslem5 30088 ipasslem11 30093 dvasin 36572 facp2 40959 fac2xp3 41020 pellexlem2 41568 jm2.25 41738 expgrowth 43094 2zrngmsgrp 46845 nn0sumshdiglemA 47305 |
Copyright terms: Public domain | W3C validator |