![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 11180, for naming consistency with mulassi 11231. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 11180 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1085 = wceq 1539 โ wcel 2104 (class class class)co 7413 โcc 11112 ยท cmul 11119 |
This theorem was proved from axioms: ax-mulass 11180 |
This theorem is referenced by: mulrid 11218 mulassi 11231 mulassd 11243 mul12 11385 mul32 11386 mul31 11387 mul4 11388 00id 11395 divass 11896 cju 12214 div4p1lem1div2 12473 xmulasslem3 13271 mulbinom2 14192 sqoddm1div8 14212 faclbnd5 14264 bcval5 14284 remim 15070 imval2 15104 01sqrexlem7 15201 sqrtneglem 15219 sqreulem 15312 clim2div 15841 prodfmul 15842 prodmolem3 15883 sinhval 16103 coshval 16104 absefib 16147 efieq1re 16148 muldvds1 16230 muldvds2 16231 dvdsmulc 16233 dvdsmulcr 16235 dvdstr 16243 eulerthlem2 16721 oddprmdvds 16842 ablfacrp 19979 cncrng 21168 nmoleub2lem3 24864 cnlmod 24889 itg2mulc 25499 abssinper 26264 sinasin 26628 dchrabl 26991 bposlem6 27026 bposlem9 27029 2sqlem6 27160 rpvmasum2 27249 cncvcOLD 30101 ipasslem5 30353 ipasslem11 30358 gg-cncrng 35488 dvasin 36877 facp2 41267 fac2xp3 41328 pellexlem2 41872 jm2.25 42042 expgrowth 43398 2zrngmsgrp 46935 nn0sumshdiglemA 47394 |
Copyright terms: Public domain | W3C validator |