![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 11250, for naming consistency with mulassi 11301. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 11250 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mulass 11250 |
This theorem is referenced by: mulrid 11288 mulassi 11301 mulassd 11313 mul12 11455 mul32 11456 mul31 11457 mul4 11458 00id 11465 divass 11967 cju 12289 div4p1lem1div2 12548 xmulasslem3 13348 mulbinom2 14272 sqoddm1div8 14292 faclbnd5 14347 bcval5 14367 remim 15166 imval2 15200 01sqrexlem7 15297 sqrtneglem 15315 sqreulem 15408 clim2div 15937 prodfmul 15938 prodmolem3 15981 sinhval 16202 coshval 16203 absefib 16246 efieq1re 16247 muldvds1 16329 muldvds2 16330 dvdsmulc 16332 dvdsmulcr 16334 dvdstr 16342 eulerthlem2 16829 oddprmdvds 16950 ablfacrp 20110 cncrng 21424 cncrngOLD 21425 nmoleub2lem3 25167 cnlmod 25192 itg2mulc 25802 abssinper 26581 sinasin 26950 dchrabl 27316 bposlem6 27351 bposlem9 27354 2sqlem6 27485 rpvmasum2 27574 cncvcOLD 30615 ipasslem5 30867 ipasslem11 30872 dvasin 37664 facp2 42100 fac2xp3 42196 pellexlem2 42786 jm2.25 42956 expgrowth 44304 2zrngmsgrp 47976 nn0sumshdiglemA 48353 |
Copyright terms: Public domain | W3C validator |