Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version |
Description: Alias for ax-mulass 10868, for naming consistency with mulassi 10917. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 10868 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 |
This theorem was proved from axioms: ax-mulass 10868 |
This theorem is referenced by: mulid1 10904 mulassi 10917 mulassd 10929 mul12 11070 mul32 11071 mul31 11072 mul4 11073 00id 11080 divass 11581 cju 11899 div4p1lem1div2 12158 xmulasslem3 12949 mulbinom2 13866 sqoddm1div8 13886 faclbnd5 13940 bcval5 13960 remim 14756 imval2 14790 sqrlem7 14888 sqrtneglem 14906 sqreulem 14999 clim2div 15529 prodfmul 15530 prodmolem3 15571 sinhval 15791 coshval 15792 absefib 15835 efieq1re 15836 muldvds1 15918 muldvds2 15919 dvdsmulc 15921 dvdsmulcr 15923 dvdstr 15931 eulerthlem2 16411 oddprmdvds 16532 ablfacrp 19584 cncrng 20531 nmoleub2lem3 24184 cnlmod 24209 itg2mulc 24817 abssinper 25582 sinasin 25944 dchrabl 26307 bposlem6 26342 bposlem9 26345 2sqlem6 26476 rpvmasum2 26565 cncvcOLD 28846 ipasslem5 29098 ipasslem11 29103 dvasin 35788 facp2 40027 fac2xp3 40088 pellexlem2 40568 jm2.25 40737 expgrowth 41842 2zrngmsgrp 45393 nn0sumshdiglemA 45853 |
Copyright terms: Public domain | W3C validator |