| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulass | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulass 11075, for naming consistency with mulassi 11126. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 11075 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 · cmul 11014 |
| This theorem was proved from axioms: ax-mulass 11075 |
| This theorem is referenced by: mulrid 11113 mulassi 11126 mulassd 11138 mul12 11281 mul32 11282 mul31 11283 mul4 11284 00id 11291 divass 11797 cju 12124 div4p1lem1div2 12379 xmulasslem3 13188 mulbinom2 14130 sqoddm1div8 14150 faclbnd5 14205 bcval5 14225 remim 15024 imval2 15058 01sqrexlem7 15155 sqrtneglem 15173 sqreulem 15267 clim2div 15796 prodfmul 15797 prodmolem3 15840 sinhval 16063 coshval 16064 absefib 16107 efieq1re 16108 muldvds1 16191 muldvds2 16192 dvdsmulc 16194 dvdsmulcr 16196 dvdstr 16205 eulerthlem2 16693 oddprmdvds 16815 ablfacrp 19947 cncrng 21295 cncrngOLD 21296 nmoleub2lem3 25013 cnlmod 25038 itg2mulc 25646 abssinper 26428 sinasin 26797 dchrabl 27163 bposlem6 27198 bposlem9 27201 2sqlem6 27332 rpvmasum2 27421 cncvcOLD 30527 ipasslem5 30779 ipasslem11 30784 dvasin 37684 facp2 42116 pellexlem2 42803 jm2.25 42972 expgrowth 44308 2zrngmsgrp 48237 nn0sumshdiglemA 48604 |
| Copyright terms: Public domain | W3C validator |