MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulass Structured version   Visualization version   GIF version

Theorem axmulass 10571
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 10595. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem axmulass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10556 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 10558 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 10558 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E )
4 mulcnsrec 10558 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))), ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢))⟩] E )
5 mulcnsrec 10558 . 2 (((𝑥R𝑦R) ∧ (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E ) = [⟨((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))), ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))⟩] E )
6 mulclsr 10498 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
7 m1r 10496 . . . . . 6 -1RR
8 mulclsr 10498 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
9 mulclsr 10498 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
107, 8, 9sylancr 587 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
11 addclsr 10497 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
126, 10, 11syl2an 595 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1312an4s 656 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
14 mulclsr 10498 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
15 mulclsr 10498 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
16 addclsr 10497 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1714, 15, 16syl2anr 596 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1817an42s 657 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1913, 18jca 512 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
20 mulclsr 10498 . . . . 5 ((𝑧R𝑣R) → (𝑧 ·R 𝑣) ∈ R)
21 mulclsr 10498 . . . . . 6 ((𝑤R𝑢R) → (𝑤 ·R 𝑢) ∈ R)
22 mulclsr 10498 . . . . . 6 ((-1RR ∧ (𝑤 ·R 𝑢) ∈ R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
237, 21, 22sylancr 587 . . . . 5 ((𝑤R𝑢R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
24 addclsr 10497 . . . . 5 (((𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2520, 23, 24syl2an 595 . . . 4 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2625an4s 656 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
27 mulclsr 10498 . . . . 5 ((𝑤R𝑣R) → (𝑤 ·R 𝑣) ∈ R)
28 mulclsr 10498 . . . . 5 ((𝑧R𝑢R) → (𝑧 ·R 𝑢) ∈ R)
29 addclsr 10497 . . . . 5 (((𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3027, 28, 29syl2anr 596 . . . 4 (((𝑧R𝑢R) ∧ (𝑤R𝑣R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3130an42s 657 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3226, 31jca 512 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R))
33 ovex 7184 . . . 4 (𝑥 ·R (𝑧 ·R 𝑣)) ∈ V
34 ovex 7184 . . . 4 (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ V
35 ovex 7184 . . . 4 (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ V
36 addcomsr 10501 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
37 addasssr 10502 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
38 ovex 7184 . . . 4 (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ V
3933, 34, 35, 36, 37, 38caov42 7374 . . 3 (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
40 distrsr 10505 . . . 4 (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
41 distrsr 10505 . . . . . 6 (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))
4241oveq2i 7162 . . . . 5 (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
43 distrsr 10505 . . . . 5 (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))
4442, 43eqtri 2848 . . . 4 (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))
4540, 44oveq12i 7163 . . 3 ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
46 vex 3502 . . . . . 6 𝑥 ∈ V
477elexi 3518 . . . . . 6 -1R ∈ V
48 vex 3502 . . . . . 6 𝑧 ∈ V
49 mulcomsr 10503 . . . . . 6 (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓)
50 distrsr 10505 . . . . . 6 (𝑓 ·R (𝑔 +R )) = ((𝑓 ·R 𝑔) +R (𝑓 ·R ))
51 ovex 7184 . . . . . 6 (𝑦 ·R 𝑤) ∈ V
52 vex 3502 . . . . . 6 𝑣 ∈ V
53 mulasssr 10504 . . . . . 6 ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R ))
5446, 47, 48, 49, 50, 51, 52, 53caovdilem 7376 . . . . 5 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)))
55 mulasssr 10504 . . . . . . 7 ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣))
5655oveq2i 7162 . . . . . 6 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))
5756oveq2i 7162 . . . . 5 ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
5854, 57eqtri 2848 . . . 4 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
59 vex 3502 . . . . . . 7 𝑦 ∈ V
60 vex 3502 . . . . . . 7 𝑤 ∈ V
61 vex 3502 . . . . . . 7 𝑢 ∈ V
6259, 46, 48, 49, 50, 60, 61, 53caovdilem 7376 . . . . . 6 (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢) = ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))
6362oveq2i 7162 . . . . 5 (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢))))
64 distrsr 10505 . . . . . 6 (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))))
65 ovex 7184 . . . . . . . 8 (𝑤 ·R 𝑢) ∈ V
6647, 46, 65, 49, 53caov12 7369 . . . . . . 7 (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))) = (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))
6766oveq2i 7162 . . . . . 6 ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
6864, 67eqtri 2848 . . . . 5 (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
6963, 68eqtri 2848 . . . 4 (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
7058, 69oveq12i 7163 . . 3 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
7139, 45, 703eqtr4ri 2859 . 2 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))))
72 ovex 7184 . . . 4 (𝑦 ·R (𝑧 ·R 𝑣)) ∈ V
73 ovex 7184 . . . 4 (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ V
74 ovex 7184 . . . 4 (𝑥 ·R (𝑤 ·R 𝑣)) ∈ V
75 ovex 7184 . . . 4 (𝑥 ·R (𝑧 ·R 𝑢)) ∈ V
7672, 73, 74, 36, 37, 75caov42 7374 . . 3 (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
77 distrsr 10505 . . . 4 (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
78 distrsr 10505 . . . 4 (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))
7977, 78oveq12i 7163 . . 3 ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
8059, 46, 48, 49, 50, 60, 52, 53caovdilem 7376 . . . 4 (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣)))
8146, 47, 48, 49, 50, 51, 61, 53caovdilem 7376 . . . . 5 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)))
82 mulasssr 10504 . . . . . . . 8 ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢))
8382oveq2i 7162 . . . . . . 7 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢)))
8447, 59, 65, 49, 53caov12 7369 . . . . . . 7 (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))
8583, 84eqtri 2848 . . . . . 6 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))
8685oveq2i 7162 . . . . 5 ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
8781, 86eqtri 2848 . . . 4 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
8880, 87oveq12i 7163 . . 3 ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
8976, 79, 883eqtr4ri 2859 . 2 ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))
901, 2, 3, 4, 5, 19, 32, 71, 89ecovass 8397 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107   E cep 5462  ccnv 5552  (class class class)co 7151  Rcnr 10279  -1Rcm1r 10282   +R cplr 10283   ·R cmr 10284  cc 10527   · cmul 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8282  df-ec 8284  df-qs 8288  df-ni 10286  df-pli 10287  df-mi 10288  df-lti 10289  df-plpq 10322  df-mpq 10323  df-ltpq 10324  df-enq 10325  df-nq 10326  df-erq 10327  df-plq 10328  df-mq 10329  df-1nq 10330  df-rq 10331  df-ltnq 10332  df-np 10395  df-1p 10396  df-plp 10397  df-mp 10398  df-ltp 10399  df-enr 10469  df-nr 10470  df-plr 10471  df-mr 10472  df-m1r 10476  df-c 10535  df-mul 10541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator