MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulass Structured version   Visualization version   GIF version

Theorem axmulass 10622
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 10646. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem axmulass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 10607 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 10609 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 10609 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E )
4 mulcnsrec 10609 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))), ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢))⟩] E )
5 mulcnsrec 10609 . 2 (((𝑥R𝑦R) ∧ (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E ) = [⟨((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))), ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))⟩] E )
6 mulclsr 10549 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
7 m1r 10547 . . . . . 6 -1RR
8 mulclsr 10549 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
9 mulclsr 10549 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
107, 8, 9sylancr 590 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
11 addclsr 10548 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
126, 10, 11syl2an 598 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1312an4s 659 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
14 mulclsr 10549 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
15 mulclsr 10549 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
16 addclsr 10548 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1714, 15, 16syl2anr 599 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1817an42s 660 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1913, 18jca 515 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
20 mulclsr 10549 . . . . 5 ((𝑧R𝑣R) → (𝑧 ·R 𝑣) ∈ R)
21 mulclsr 10549 . . . . . 6 ((𝑤R𝑢R) → (𝑤 ·R 𝑢) ∈ R)
22 mulclsr 10549 . . . . . 6 ((-1RR ∧ (𝑤 ·R 𝑢) ∈ R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
237, 21, 22sylancr 590 . . . . 5 ((𝑤R𝑢R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
24 addclsr 10548 . . . . 5 (((𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2520, 23, 24syl2an 598 . . . 4 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2625an4s 659 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
27 mulclsr 10549 . . . . 5 ((𝑤R𝑣R) → (𝑤 ·R 𝑣) ∈ R)
28 mulclsr 10549 . . . . 5 ((𝑧R𝑢R) → (𝑧 ·R 𝑢) ∈ R)
29 addclsr 10548 . . . . 5 (((𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3027, 28, 29syl2anr 599 . . . 4 (((𝑧R𝑢R) ∧ (𝑤R𝑣R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3130an42s 660 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3226, 31jca 515 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R))
33 ovex 7188 . . . 4 (𝑥 ·R (𝑧 ·R 𝑣)) ∈ V
34 ovex 7188 . . . 4 (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ V
35 ovex 7188 . . . 4 (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ V
36 addcomsr 10552 . . . 4 (𝑓 +R 𝑔) = (𝑔 +R 𝑓)
37 addasssr 10553 . . . 4 ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R ))
38 ovex 7188 . . . 4 (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ V
3933, 34, 35, 36, 37, 38caov42 7382 . . 3 (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
40 distrsr 10556 . . . 4 (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
41 distrsr 10556 . . . . . 6 (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))
4241oveq2i 7166 . . . . 5 (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
43 distrsr 10556 . . . . 5 (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))
4442, 43eqtri 2781 . . . 4 (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))
4540, 44oveq12i 7167 . . 3 ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
46 vex 3413 . . . . . 6 𝑥 ∈ V
477elexi 3429 . . . . . 6 -1R ∈ V
48 vex 3413 . . . . . 6 𝑧 ∈ V
49 mulcomsr 10554 . . . . . 6 (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓)
50 distrsr 10556 . . . . . 6 (𝑓 ·R (𝑔 +R )) = ((𝑓 ·R 𝑔) +R (𝑓 ·R ))
51 ovex 7188 . . . . . 6 (𝑦 ·R 𝑤) ∈ V
52 vex 3413 . . . . . 6 𝑣 ∈ V
53 mulasssr 10555 . . . . . 6 ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R ))
5446, 47, 48, 49, 50, 51, 52, 53caovdilem 7384 . . . . 5 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)))
55 mulasssr 10555 . . . . . . 7 ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣))
5655oveq2i 7166 . . . . . 6 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))
5756oveq2i 7166 . . . . 5 ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
5854, 57eqtri 2781 . . . 4 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
59 vex 3413 . . . . . . 7 𝑦 ∈ V
60 vex 3413 . . . . . . 7 𝑤 ∈ V
61 vex 3413 . . . . . . 7 𝑢 ∈ V
6259, 46, 48, 49, 50, 60, 61, 53caovdilem 7384 . . . . . 6 (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢) = ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))
6362oveq2i 7166 . . . . 5 (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢))))
64 distrsr 10556 . . . . . 6 (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))))
65 ovex 7188 . . . . . . . 8 (𝑤 ·R 𝑢) ∈ V
6647, 46, 65, 49, 53caov12 7377 . . . . . . 7 (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))) = (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))
6766oveq2i 7166 . . . . . 6 ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
6864, 67eqtri 2781 . . . . 5 (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
6963, 68eqtri 2781 . . . 4 (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
7058, 69oveq12i 7167 . . 3 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
7139, 45, 703eqtr4ri 2792 . 2 ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))))
72 ovex 7188 . . . 4 (𝑦 ·R (𝑧 ·R 𝑣)) ∈ V
73 ovex 7188 . . . 4 (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ V
74 ovex 7188 . . . 4 (𝑥 ·R (𝑤 ·R 𝑣)) ∈ V
75 ovex 7188 . . . 4 (𝑥 ·R (𝑧 ·R 𝑢)) ∈ V
7672, 73, 74, 36, 37, 75caov42 7382 . . 3 (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
77 distrsr 10556 . . . 4 (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
78 distrsr 10556 . . . 4 (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))
7977, 78oveq12i 7167 . . 3 ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
8059, 46, 48, 49, 50, 60, 52, 53caovdilem 7384 . . . 4 (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣)))
8146, 47, 48, 49, 50, 51, 61, 53caovdilem 7384 . . . . 5 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)))
82 mulasssr 10555 . . . . . . . 8 ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢))
8382oveq2i 7166 . . . . . . 7 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢)))
8447, 59, 65, 49, 53caov12 7377 . . . . . . 7 (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))
8583, 84eqtri 2781 . . . . . 6 (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))
8685oveq2i 7166 . . . . 5 ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
8781, 86eqtri 2781 . . . 4 (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
8880, 87oveq12i 7167 . . 3 ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
8976, 79, 883eqtr4ri 2792 . 2 ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))
901, 2, 3, 4, 5, 19, 32, 71, 89ecovass 8419 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   E cep 5437  ccnv 5526  (class class class)co 7155  Rcnr 10330  -1Rcm1r 10333   +R cplr 10334   ·R cmr 10335  cc 10578   · cmul 10585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-oadd 8121  df-omul 8122  df-er 8304  df-ec 8306  df-qs 8310  df-ni 10337  df-pli 10338  df-mi 10339  df-lti 10340  df-plpq 10373  df-mpq 10374  df-ltpq 10375  df-enq 10376  df-nq 10377  df-erq 10378  df-plq 10379  df-mq 10380  df-1nq 10381  df-rq 10382  df-ltnq 10383  df-np 10446  df-1p 10447  df-plp 10448  df-mp 10449  df-ltp 10450  df-enr 10520  df-nr 10521  df-plr 10522  df-mr 10523  df-m1r 10527  df-c 10586  df-mul 10592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator