| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-addass | Structured version Visualization version GIF version | ||
| Description: Addition of complex numbers is associative. Axiom 9 of 22 for real and complex numbers, justified by Theorem axaddass 11196. Proofs should normally use addass 11242 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11153 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2108 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1087 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 11158 | . . . . 5 class + | |
| 10 | 1, 4, 9 | co 7431 | . . . 4 class (𝐴 + 𝐵) |
| 11 | 10, 6, 9 | co 7431 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
| 12 | 4, 6, 9 | co 7431 | . . . 4 class (𝐵 + 𝐶) |
| 13 | 1, 12, 9 | co 7431 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
| 14 | 11, 13 | wceq 1540 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: addass 11242 |
| Copyright terms: Public domain | W3C validator |