Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 11005, for naming consistency with mulcomi 11053. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 11005 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7313 ℂcc 10939 · cmul 10946 |
This theorem was proved from axioms: ax-mulcom 11005 |
This theorem is referenced by: adddir 11036 mulid2 11044 mulcomi 11053 mulcomd 11066 mul12 11210 mul32 11211 mul31 11212 mul4r 11214 mul01 11224 muladd 11477 subdir 11479 mulneg2 11482 recextlem1 11675 mulcan2g 11699 divmul3 11708 div23 11722 div13 11724 div12 11725 divmulasscom 11727 divcan4 11730 divmul13 11748 divmul24 11749 divcan7 11754 div2neg 11768 prodgt02 11893 ltmul2 11896 lemul2 11898 lemul2a 11900 ltmulgt12 11906 lemulge12 11908 ltmuldiv2 11919 ltdivmul2 11922 lt2mul2div 11923 ledivmul2 11924 lemuldiv2 11926 supmul 12017 times2 12180 modcyc 13696 modcyc2 13697 modmulmodr 13727 subsq 13996 cjmulrcl 14924 imval2 14931 abscj 15060 sqabsadd 15063 sqabssub 15064 sqreulem 15140 iseraltlem2 15463 iseraltlem3 15464 climcndslem2 15631 prodfmul 15671 prodmolem3 15712 bpoly3 15837 efcllem 15856 efexp 15879 sinmul 15950 demoivreALT 15979 dvdsmul1 16056 odd2np1lem 16118 odd2np1 16119 opeo 16143 omeo 16144 modgcd 16309 bezoutlem1 16316 dvdsgcd 16321 coprmdvds 16425 coprmdvds2 16426 qredeq 16429 eulerthlem2 16550 modprm0 16573 modprmn0modprm0 16575 coprimeprodsq2 16577 prmreclem6 16689 odmod 19221 cncrng 20690 cnsrng 20703 pcoass 24258 clmvscom 24324 dvlipcn 25229 plydivlem4 25527 quotcan 25540 aaliou3lem3 25575 ef2kpi 25706 sinperlem 25708 sinmpi 25715 cosmpi 25716 sinppi 25717 cosppi 25718 sineq0 25751 tanregt0 25766 logneg 25814 lognegb 25816 logimul 25840 tanarg 25845 logtayl 25886 cxpsqrtlem 25928 cxpcom 25963 cubic2 26069 quart1 26077 log2cnv 26165 basellem1 26301 basellem3 26303 basellem5 26305 basellem8 26308 mumul 26401 chtublem 26430 perfectlem1 26448 perfectlem2 26449 perfect 26450 dchrabl 26473 bposlem6 26508 bposlem9 26511 lgsdir2lem4 26547 lgsdir2 26549 lgsquadlem2 26600 lgsquad2 26605 rpvmasum2 26731 mulog2sumlem1 26753 pntibndlem2 26810 pntibndlem3 26811 pntlemf 26824 nvscom 29099 ipasslem11 29310 ipblnfi 29325 hvmulcom 29513 h1de2bi 30024 homul12 30275 riesz3i 30532 riesz1 30535 kbass4 30589 sin2h 35827 heiborlem6 36034 rmym1 40968 expgrowthi 42179 expgrowth 42181 stoweidlem10 43795 perfectALTVlem1 45432 perfectALTVlem2 45433 perfectALTV 45434 tgoldbachlt 45527 2zrngnmlid2 45768 |
Copyright terms: Public domain | W3C validator |