![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 11248, for naming consistency with mulcomi 11298. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 11248 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mulcom 11248 |
This theorem is referenced by: adddir 11281 mullid 11289 mulcomi 11298 mulcomd 11311 mul12 11455 mul32 11456 mul31 11457 mul4r 11459 mul01 11469 muladd 11722 subdir 11724 mulneg2 11727 recextlem1 11920 mulcan2g 11944 divmul3 11954 div23 11968 div13 11970 div12 11971 divmulasscom 11973 divcan4 11976 divmul13 11997 divmul24 11998 divcan7 12003 div2neg 12017 prodgt02 12142 ltmul2 12145 lemul2 12147 lemul2a 12149 ltmulgt12 12155 lemulge12 12158 ltmuldiv2 12169 ltdivmul2 12172 lt2mul2div 12173 ledivmul2 12174 lemuldiv2 12176 supmul 12267 times2 12430 modcyc 13957 modcyc2 13958 modmulmodr 13988 subsq 14259 cjmulrcl 15193 imval2 15200 abscj 15328 sqabsadd 15331 sqabssub 15332 sqreulem 15408 iseraltlem2 15731 iseraltlem3 15732 climcndslem2 15898 prodfmul 15938 prodmolem3 15981 bpoly3 16106 efcllem 16125 efexp 16149 sinmul 16220 demoivreALT 16249 dvdsmul1 16326 odd2np1lem 16388 odd2np1 16389 opeo 16413 omeo 16414 modgcd 16579 bezoutlem1 16586 dvdsgcd 16591 coprmdvds 16700 coprmdvds2 16701 qredeq 16704 eulerthlem2 16829 modprm0 16852 modprmn0modprm0 16854 coprimeprodsq2 16856 prmreclem6 16968 odmod 19588 cncrng 21424 cncrngOLD 21425 cnsrng 21441 pcoass 25076 clmvscom 25142 dvlipcn 26053 plydivlem4 26356 quotcan 26369 aaliou3lem3 26404 ef2kpi 26538 sinperlem 26540 sinmpi 26547 cosmpi 26548 sinppi 26549 cosppi 26550 sineq0 26584 tanregt0 26599 logneg 26648 lognegb 26650 logimul 26674 tanarg 26679 logtayl 26720 cxpsqrtlem 26762 cxpcom 26799 cubic2 26909 quart1 26917 log2cnv 27005 basellem1 27142 basellem3 27144 basellem5 27146 basellem8 27149 mumul 27242 chtublem 27273 perfectlem1 27291 perfectlem2 27292 perfect 27293 dchrabl 27316 bposlem6 27351 bposlem9 27354 lgsdir2lem4 27390 lgsdir2 27392 lgsquadlem2 27443 lgsquad2 27448 rpvmasum2 27574 mulog2sumlem1 27596 pntibndlem2 27653 pntibndlem3 27654 pntlemf 27667 nvscom 30661 ipasslem11 30872 ipblnfi 30887 hvmulcom 31075 h1de2bi 31586 homul12 31837 riesz3i 32094 riesz1 32097 kbass4 32151 sin2h 37570 heiborlem6 37776 rmym1 42892 expgrowthi 44302 expgrowth 44304 stoweidlem10 45931 perfectALTVlem1 47595 perfectALTVlem2 47596 perfectALTV 47597 tgoldbachlt 47690 2zrngnmlid2 47980 |
Copyright terms: Public domain | W3C validator |