| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11067, for naming consistency with mulcomi 11117. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11067 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mulcom 11067 |
| This theorem is referenced by: adddir 11100 mullid 11108 mulcomi 11117 mulcomd 11130 mul12 11275 mul32 11276 mul31 11277 mul4r 11279 mul01 11289 muladd 11546 subdir 11548 mulneg2 11551 recextlem1 11744 mulcan2g 11768 divmul3 11778 div23 11792 div13 11794 div12 11795 divmulasscom 11797 divcan4 11800 divmul13 11821 divmul24 11822 divcan7 11827 div2neg 11841 prodgt02 11966 ltmul2 11969 lemul2 11971 lemul2a 11973 ltmulgt12 11979 lemulge12 11982 ltmuldiv2 11993 ltdivmul2 11996 lt2mul2div 11997 ledivmul2 11998 lemuldiv2 12000 supmul 12091 times2 12254 modcyc 13807 modcyc2 13808 modmulmodr 13841 subsq 14114 cjmulrcl 15048 imval2 15055 abscj 15183 sqabsadd 15186 sqabssub 15187 sqreulem 15264 iseraltlem2 15587 iseraltlem3 15588 climcndslem2 15754 prodfmul 15794 prodmolem3 15837 bpoly3 15962 efcllem 15981 efexp 16007 sinmul 16078 demoivreALT 16107 dvdsmul1 16185 odd2np1lem 16248 odd2np1 16249 opeo 16273 omeo 16274 modgcd 16440 bezoutlem1 16447 dvdsgcd 16452 coprmdvds 16561 coprmdvds2 16562 qredeq 16565 eulerthlem2 16690 modprm0 16714 modprmn0modprm0 16716 coprimeprodsq2 16718 prmreclem6 16830 odmod 19456 cncrng 21323 cncrngOLD 21324 cnsrng 21340 pcoass 24949 clmvscom 25015 dvlipcn 25924 plydivlem4 26229 quotcan 26242 aaliou3lem3 26277 ef2kpi 26412 sinperlem 26414 sinmpi 26421 cosmpi 26422 sinppi 26423 cosppi 26424 sineq0 26458 tanregt0 26473 logneg 26522 lognegb 26524 logimul 26548 tanarg 26553 logtayl 26594 cxpsqrtlem 26636 cxpcom 26673 cubic2 26783 quart1 26791 log2cnv 26879 basellem1 27016 basellem3 27018 basellem5 27020 basellem8 27023 mumul 27116 chtublem 27147 perfectlem1 27165 perfectlem2 27166 perfect 27167 dchrabl 27190 bposlem6 27225 bposlem9 27228 lgsdir2lem4 27264 lgsdir2 27266 lgsquadlem2 27317 lgsquad2 27322 rpvmasum2 27448 mulog2sumlem1 27470 pntibndlem2 27527 pntibndlem3 27528 pntlemf 27541 nvscom 30604 ipasslem11 30815 ipblnfi 30830 hvmulcom 31018 h1de2bi 31529 homul12 31780 riesz3i 32037 riesz1 32040 kbass4 32094 sin2h 37649 heiborlem6 37855 rmym1 42967 expgrowthi 44365 expgrowth 44367 stoweidlem10 46047 perfectALTVlem1 47751 perfectALTVlem2 47752 perfectALTV 47753 tgoldbachlt 47846 2zrngnmlid2 48287 |
| Copyright terms: Public domain | W3C validator |