| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11092, for naming consistency with mulcomi 11142. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11092 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mulcom 11092 |
| This theorem is referenced by: adddir 11125 mullid 11133 mulcomi 11142 mulcomd 11155 mul12 11299 mul32 11300 mul31 11301 mul4r 11303 mul01 11313 muladd 11570 subdir 11572 mulneg2 11575 recextlem1 11768 mulcan2g 11792 divmul3 11802 div23 11816 div13 11818 div12 11819 divmulasscom 11821 divcan4 11824 divmul13 11845 divmul24 11846 divcan7 11851 div2neg 11865 prodgt02 11990 ltmul2 11993 lemul2 11995 lemul2a 11997 ltmulgt12 12003 lemulge12 12006 ltmuldiv2 12017 ltdivmul2 12020 lt2mul2div 12021 ledivmul2 12022 lemuldiv2 12024 supmul 12115 times2 12278 modcyc 13828 modcyc2 13829 modmulmodr 13862 subsq 14135 cjmulrcl 15069 imval2 15076 abscj 15204 sqabsadd 15207 sqabssub 15208 sqreulem 15285 iseraltlem2 15608 iseraltlem3 15609 climcndslem2 15775 prodfmul 15815 prodmolem3 15858 bpoly3 15983 efcllem 16002 efexp 16028 sinmul 16099 demoivreALT 16128 dvdsmul1 16206 odd2np1lem 16269 odd2np1 16270 opeo 16294 omeo 16295 modgcd 16461 bezoutlem1 16468 dvdsgcd 16473 coprmdvds 16582 coprmdvds2 16583 qredeq 16586 eulerthlem2 16711 modprm0 16735 modprmn0modprm0 16737 coprimeprodsq2 16739 prmreclem6 16851 odmod 19443 cncrng 21313 cncrngOLD 21314 cnsrng 21330 pcoass 24940 clmvscom 25006 dvlipcn 25915 plydivlem4 26220 quotcan 26233 aaliou3lem3 26268 ef2kpi 26403 sinperlem 26405 sinmpi 26412 cosmpi 26413 sinppi 26414 cosppi 26415 sineq0 26449 tanregt0 26464 logneg 26513 lognegb 26515 logimul 26539 tanarg 26544 logtayl 26585 cxpsqrtlem 26627 cxpcom 26664 cubic2 26774 quart1 26782 log2cnv 26870 basellem1 27007 basellem3 27009 basellem5 27011 basellem8 27014 mumul 27107 chtublem 27138 perfectlem1 27156 perfectlem2 27157 perfect 27158 dchrabl 27181 bposlem6 27216 bposlem9 27219 lgsdir2lem4 27255 lgsdir2 27257 lgsquadlem2 27308 lgsquad2 27313 rpvmasum2 27439 mulog2sumlem1 27461 pntibndlem2 27518 pntibndlem3 27519 pntlemf 27532 nvscom 30591 ipasslem11 30802 ipblnfi 30817 hvmulcom 31005 h1de2bi 31516 homul12 31767 riesz3i 32024 riesz1 32027 kbass4 32081 sin2h 37589 heiborlem6 37795 rmym1 42908 expgrowthi 44306 expgrowth 44308 stoweidlem10 45992 perfectALTVlem1 47706 perfectALTVlem2 47707 perfectALTV 47708 tgoldbachlt 47801 2zrngnmlid2 48242 |
| Copyright terms: Public domain | W3C validator |