![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 11176, for naming consistency with mulcomi 11226. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 11176 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 = wceq 1539 โ wcel 2104 (class class class)co 7411 โcc 11110 ยท cmul 11117 |
This theorem was proved from axioms: ax-mulcom 11176 |
This theorem is referenced by: adddir 11209 mullid 11217 mulcomi 11226 mulcomd 11239 mul12 11383 mul32 11384 mul31 11385 mul4r 11387 mul01 11397 muladd 11650 subdir 11652 mulneg2 11655 recextlem1 11848 mulcan2g 11872 divmul3 11881 div23 11895 div13 11897 div12 11898 divmulasscom 11900 divcan4 11903 divmul13 11921 divmul24 11922 divcan7 11927 div2neg 11941 prodgt02 12066 ltmul2 12069 lemul2 12071 lemul2a 12073 ltmulgt12 12079 lemulge12 12081 ltmuldiv2 12092 ltdivmul2 12095 lt2mul2div 12096 ledivmul2 12097 lemuldiv2 12099 supmul 12190 times2 12353 modcyc 13875 modcyc2 13876 modmulmodr 13906 subsq 14178 cjmulrcl 15095 imval2 15102 abscj 15230 sqabsadd 15233 sqabssub 15234 sqreulem 15310 iseraltlem2 15633 iseraltlem3 15634 climcndslem2 15800 prodfmul 15840 prodmolem3 15881 bpoly3 16006 efcllem 16025 efexp 16048 sinmul 16119 demoivreALT 16148 dvdsmul1 16225 odd2np1lem 16287 odd2np1 16288 opeo 16312 omeo 16313 modgcd 16478 bezoutlem1 16485 dvdsgcd 16490 coprmdvds 16594 coprmdvds2 16595 qredeq 16598 eulerthlem2 16719 modprm0 16742 modprmn0modprm0 16744 coprimeprodsq2 16746 prmreclem6 16858 odmod 19455 cncrng 21166 cnsrng 21179 pcoass 24771 clmvscom 24837 dvlipcn 25746 plydivlem4 26045 quotcan 26058 aaliou3lem3 26093 ef2kpi 26224 sinperlem 26226 sinmpi 26233 cosmpi 26234 sinppi 26235 cosppi 26236 sineq0 26269 tanregt0 26284 logneg 26332 lognegb 26334 logimul 26358 tanarg 26363 logtayl 26404 cxpsqrtlem 26446 cxpcom 26483 cubic2 26589 quart1 26597 log2cnv 26685 basellem1 26821 basellem3 26823 basellem5 26825 basellem8 26828 mumul 26921 chtublem 26950 perfectlem1 26968 perfectlem2 26969 perfect 26970 dchrabl 26993 bposlem6 27028 bposlem9 27031 lgsdir2lem4 27067 lgsdir2 27069 lgsquadlem2 27120 lgsquad2 27125 rpvmasum2 27251 mulog2sumlem1 27273 pntibndlem2 27330 pntibndlem3 27331 pntlemf 27344 nvscom 30149 ipasslem11 30360 ipblnfi 30375 hvmulcom 30563 h1de2bi 31074 homul12 31325 riesz3i 31582 riesz1 31585 kbass4 31639 gg-cncrng 35486 sin2h 36781 heiborlem6 36987 rmym1 41976 expgrowthi 43394 expgrowth 43396 stoweidlem10 45024 perfectALTVlem1 46687 perfectALTVlem2 46688 perfectALTV 46689 tgoldbachlt 46782 2zrngnmlid2 46937 |
Copyright terms: Public domain | W3C validator |