![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 11216, for naming consistency with mulcomi 11266. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 11216 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 |
This theorem was proved from axioms: ax-mulcom 11216 |
This theorem is referenced by: adddir 11249 mullid 11257 mulcomi 11266 mulcomd 11279 mul12 11423 mul32 11424 mul31 11425 mul4r 11427 mul01 11437 muladd 11692 subdir 11694 mulneg2 11697 recextlem1 11890 mulcan2g 11914 divmul3 11924 div23 11938 div13 11940 div12 11941 divmulasscom 11943 divcan4 11946 divmul13 11967 divmul24 11968 divcan7 11973 div2neg 11987 prodgt02 12112 ltmul2 12115 lemul2 12117 lemul2a 12119 ltmulgt12 12125 lemulge12 12128 ltmuldiv2 12139 ltdivmul2 12142 lt2mul2div 12143 ledivmul2 12144 lemuldiv2 12146 supmul 12237 times2 12400 modcyc 13942 modcyc2 13943 modmulmodr 13974 subsq 14245 cjmulrcl 15179 imval2 15186 abscj 15314 sqabsadd 15317 sqabssub 15318 sqreulem 15394 iseraltlem2 15715 iseraltlem3 15716 climcndslem2 15882 prodfmul 15922 prodmolem3 15965 bpoly3 16090 efcllem 16109 efexp 16133 sinmul 16204 demoivreALT 16233 dvdsmul1 16311 odd2np1lem 16373 odd2np1 16374 opeo 16398 omeo 16399 modgcd 16565 bezoutlem1 16572 dvdsgcd 16577 coprmdvds 16686 coprmdvds2 16687 qredeq 16690 eulerthlem2 16815 modprm0 16838 modprmn0modprm0 16840 coprimeprodsq2 16842 prmreclem6 16954 odmod 19578 cncrng 21418 cncrngOLD 21419 cnsrng 21435 pcoass 25070 clmvscom 25136 dvlipcn 26047 plydivlem4 26352 quotcan 26365 aaliou3lem3 26400 ef2kpi 26534 sinperlem 26536 sinmpi 26543 cosmpi 26544 sinppi 26545 cosppi 26546 sineq0 26580 tanregt0 26595 logneg 26644 lognegb 26646 logimul 26670 tanarg 26675 logtayl 26716 cxpsqrtlem 26758 cxpcom 26795 cubic2 26905 quart1 26913 log2cnv 27001 basellem1 27138 basellem3 27140 basellem5 27142 basellem8 27145 mumul 27238 chtublem 27269 perfectlem1 27287 perfectlem2 27288 perfect 27289 dchrabl 27312 bposlem6 27347 bposlem9 27350 lgsdir2lem4 27386 lgsdir2 27388 lgsquadlem2 27439 lgsquad2 27444 rpvmasum2 27570 mulog2sumlem1 27592 pntibndlem2 27649 pntibndlem3 27650 pntlemf 27663 nvscom 30657 ipasslem11 30868 ipblnfi 30883 hvmulcom 31071 h1de2bi 31582 homul12 31833 riesz3i 32090 riesz1 32093 kbass4 32147 sin2h 37596 heiborlem6 37802 rmym1 42923 expgrowthi 44328 expgrowth 44330 stoweidlem10 45965 perfectALTVlem1 47645 perfectALTVlem2 47646 perfectALTV 47647 tgoldbachlt 47740 2zrngnmlid2 48100 |
Copyright terms: Public domain | W3C validator |