Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 10866, for naming consistency with mulcomi 10914. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 10866 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 |
This theorem was proved from axioms: ax-mulcom 10866 |
This theorem is referenced by: adddir 10897 mulid2 10905 mulcomi 10914 mulcomd 10927 mul12 11070 mul32 11071 mul31 11072 mul4r 11074 mul01 11084 muladd 11337 subdir 11339 mulneg2 11342 recextlem1 11535 mulcan2g 11559 divmul3 11568 div23 11582 div13 11584 div12 11585 divmulasscom 11587 divcan4 11590 divmul13 11608 divmul24 11609 divcan7 11614 div2neg 11628 prodgt02 11753 ltmul2 11756 lemul2 11758 lemul2a 11760 ltmulgt12 11766 lemulge12 11768 ltmuldiv2 11779 ltdivmul2 11782 lt2mul2div 11783 ledivmul2 11784 lemuldiv2 11786 supmul 11877 times2 12040 modcyc 13554 modcyc2 13555 modmulmodr 13585 subsq 13854 cjmulrcl 14783 imval2 14790 abscj 14919 sqabsadd 14922 sqabssub 14923 sqreulem 14999 iseraltlem2 15322 iseraltlem3 15323 climcndslem2 15490 prodfmul 15530 prodmolem3 15571 bpoly3 15696 efcllem 15715 efexp 15738 sinmul 15809 demoivreALT 15838 dvdsmul1 15915 odd2np1lem 15977 odd2np1 15978 opeo 16002 omeo 16003 modgcd 16168 bezoutlem1 16175 dvdsgcd 16180 gcdmultipleOLD 16188 coprmdvds 16286 coprmdvds2 16287 qredeq 16290 eulerthlem2 16411 modprm0 16434 modprmn0modprm0 16436 coprimeprodsq2 16438 prmreclem6 16550 odmod 19069 cncrng 20531 cnsrng 20544 pcoass 24093 clmvscom 24159 dvlipcn 25063 plydivlem4 25361 quotcan 25374 aaliou3lem3 25409 ef2kpi 25540 sinperlem 25542 sinmpi 25549 cosmpi 25550 sinppi 25551 cosppi 25552 sineq0 25585 tanregt0 25600 logneg 25648 lognegb 25650 logimul 25674 tanarg 25679 logtayl 25720 cxpsqrtlem 25762 cxpcom 25797 cubic2 25903 quart1 25911 log2cnv 25999 basellem1 26135 basellem3 26137 basellem5 26139 basellem8 26142 mumul 26235 chtublem 26264 perfectlem1 26282 perfectlem2 26283 perfect 26284 dchrabl 26307 bposlem6 26342 bposlem9 26345 lgsdir2lem4 26381 lgsdir2 26383 lgsquadlem2 26434 lgsquad2 26439 rpvmasum2 26565 mulog2sumlem1 26587 pntibndlem2 26644 pntibndlem3 26645 pntlemf 26658 nvscom 28892 ipasslem11 29103 ipblnfi 29118 hvmulcom 29306 h1de2bi 29817 homul12 30068 riesz3i 30325 riesz1 30328 kbass4 30382 sin2h 35694 heiborlem6 35901 rmym1 40673 expgrowthi 41840 expgrowth 41842 stoweidlem10 43441 perfectALTVlem1 45061 perfectALTVlem2 45062 perfectALTV 45063 tgoldbachlt 45156 2zrngnmlid2 45397 |
Copyright terms: Public domain | W3C validator |