| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11077, for naming consistency with mulcomi 11127. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11077 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mulcom 11077 |
| This theorem is referenced by: adddir 11110 mullid 11118 mulcomi 11127 mulcomd 11140 mul12 11285 mul32 11286 mul31 11287 mul4r 11289 mul01 11299 muladd 11556 subdir 11558 mulneg2 11561 recextlem1 11754 mulcan2g 11778 divmul3 11788 div23 11802 div13 11804 div12 11805 divmulasscom 11807 divcan4 11810 divmul13 11831 divmul24 11832 divcan7 11837 div2neg 11851 prodgt02 11976 ltmul2 11979 lemul2 11981 lemul2a 11983 ltmulgt12 11989 lemulge12 11992 ltmuldiv2 12003 ltdivmul2 12006 lt2mul2div 12007 ledivmul2 12008 lemuldiv2 12010 supmul 12101 times2 12264 modcyc 13812 modcyc2 13813 modmulmodr 13846 subsq 14119 cjmulrcl 15053 imval2 15060 abscj 15188 sqabsadd 15191 sqabssub 15192 sqreulem 15269 iseraltlem2 15592 iseraltlem3 15593 climcndslem2 15759 prodfmul 15799 prodmolem3 15842 bpoly3 15967 efcllem 15986 efexp 16012 sinmul 16083 demoivreALT 16112 dvdsmul1 16190 odd2np1lem 16253 odd2np1 16254 opeo 16278 omeo 16279 modgcd 16445 bezoutlem1 16452 dvdsgcd 16457 coprmdvds 16566 coprmdvds2 16567 qredeq 16570 eulerthlem2 16695 modprm0 16719 modprmn0modprm0 16721 coprimeprodsq2 16723 prmreclem6 16835 odmod 19460 cncrng 21327 cncrngOLD 21328 cnsrng 21344 pcoass 24952 clmvscom 25018 dvlipcn 25927 plydivlem4 26232 quotcan 26245 aaliou3lem3 26280 ef2kpi 26415 sinperlem 26417 sinmpi 26424 cosmpi 26425 sinppi 26426 cosppi 26427 sineq0 26461 tanregt0 26476 logneg 26525 lognegb 26527 logimul 26551 tanarg 26556 logtayl 26597 cxpsqrtlem 26639 cxpcom 26676 cubic2 26786 quart1 26794 log2cnv 26882 basellem1 27019 basellem3 27021 basellem5 27023 basellem8 27026 mumul 27119 chtublem 27150 perfectlem1 27168 perfectlem2 27169 perfect 27170 dchrabl 27193 bposlem6 27228 bposlem9 27231 lgsdir2lem4 27267 lgsdir2 27269 lgsquadlem2 27320 lgsquad2 27325 rpvmasum2 27451 mulog2sumlem1 27473 pntibndlem2 27530 pntibndlem3 27531 pntlemf 27544 nvscom 30611 ipasslem11 30822 ipblnfi 30837 hvmulcom 31025 h1de2bi 31536 homul12 31787 riesz3i 32044 riesz1 32047 kbass4 32101 sin2h 37670 heiborlem6 37876 rmym1 43052 expgrowthi 44450 expgrowth 44452 stoweidlem10 46132 perfectALTVlem1 47845 perfectALTVlem2 47846 perfectALTV 47847 tgoldbachlt 47940 2zrngnmlid2 48381 |
| Copyright terms: Public domain | W3C validator |