Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version |
Description: Alias for ax-mulcom 10944, for naming consistency with mulcomi 10992. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 10944 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 · cmul 10885 |
This theorem was proved from axioms: ax-mulcom 10944 |
This theorem is referenced by: adddir 10975 mulid2 10983 mulcomi 10992 mulcomd 11005 mul12 11149 mul32 11150 mul31 11151 mul4r 11153 mul01 11163 muladd 11416 subdir 11418 mulneg2 11421 recextlem1 11614 mulcan2g 11638 divmul3 11647 div23 11661 div13 11663 div12 11664 divmulasscom 11666 divcan4 11669 divmul13 11687 divmul24 11688 divcan7 11693 div2neg 11707 prodgt02 11832 ltmul2 11835 lemul2 11837 lemul2a 11839 ltmulgt12 11845 lemulge12 11847 ltmuldiv2 11858 ltdivmul2 11861 lt2mul2div 11862 ledivmul2 11863 lemuldiv2 11865 supmul 11956 times2 12119 modcyc 13635 modcyc2 13636 modmulmodr 13666 subsq 13935 cjmulrcl 14864 imval2 14871 abscj 15000 sqabsadd 15003 sqabssub 15004 sqreulem 15080 iseraltlem2 15403 iseraltlem3 15404 climcndslem2 15571 prodfmul 15611 prodmolem3 15652 bpoly3 15777 efcllem 15796 efexp 15819 sinmul 15890 demoivreALT 15919 dvdsmul1 15996 odd2np1lem 16058 odd2np1 16059 opeo 16083 omeo 16084 modgcd 16249 bezoutlem1 16256 dvdsgcd 16261 gcdmultipleOLD 16269 coprmdvds 16367 coprmdvds2 16368 qredeq 16371 eulerthlem2 16492 modprm0 16515 modprmn0modprm0 16517 coprimeprodsq2 16519 prmreclem6 16631 odmod 19163 cncrng 20628 cnsrng 20641 pcoass 24196 clmvscom 24262 dvlipcn 25167 plydivlem4 25465 quotcan 25478 aaliou3lem3 25513 ef2kpi 25644 sinperlem 25646 sinmpi 25653 cosmpi 25654 sinppi 25655 cosppi 25656 sineq0 25689 tanregt0 25704 logneg 25752 lognegb 25754 logimul 25778 tanarg 25783 logtayl 25824 cxpsqrtlem 25866 cxpcom 25901 cubic2 26007 quart1 26015 log2cnv 26103 basellem1 26239 basellem3 26241 basellem5 26243 basellem8 26246 mumul 26339 chtublem 26368 perfectlem1 26386 perfectlem2 26387 perfect 26388 dchrabl 26411 bposlem6 26446 bposlem9 26449 lgsdir2lem4 26485 lgsdir2 26487 lgsquadlem2 26538 lgsquad2 26543 rpvmasum2 26669 mulog2sumlem1 26691 pntibndlem2 26748 pntibndlem3 26749 pntlemf 26762 nvscom 29000 ipasslem11 29211 ipblnfi 29226 hvmulcom 29414 h1de2bi 29925 homul12 30176 riesz3i 30433 riesz1 30436 kbass4 30490 sin2h 35776 heiborlem6 35983 rmym1 40764 expgrowthi 41958 expgrowth 41960 stoweidlem10 43558 perfectALTVlem1 45184 perfectALTVlem2 45185 perfectALTV 45186 tgoldbachlt 45279 2zrngnmlid2 45520 |
Copyright terms: Public domain | W3C validator |