| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11132, for naming consistency with mulcomi 11182. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11132 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mulcom 11132 |
| This theorem is referenced by: adddir 11165 mullid 11173 mulcomi 11182 mulcomd 11195 mul12 11339 mul32 11340 mul31 11341 mul4r 11343 mul01 11353 muladd 11610 subdir 11612 mulneg2 11615 recextlem1 11808 mulcan2g 11832 divmul3 11842 div23 11856 div13 11858 div12 11859 divmulasscom 11861 divcan4 11864 divmul13 11885 divmul24 11886 divcan7 11891 div2neg 11905 prodgt02 12030 ltmul2 12033 lemul2 12035 lemul2a 12037 ltmulgt12 12043 lemulge12 12046 ltmuldiv2 12057 ltdivmul2 12060 lt2mul2div 12061 ledivmul2 12062 lemuldiv2 12064 supmul 12155 times2 12318 modcyc 13868 modcyc2 13869 modmulmodr 13902 subsq 14175 cjmulrcl 15110 imval2 15117 abscj 15245 sqabsadd 15248 sqabssub 15249 sqreulem 15326 iseraltlem2 15649 iseraltlem3 15650 climcndslem2 15816 prodfmul 15856 prodmolem3 15899 bpoly3 16024 efcllem 16043 efexp 16069 sinmul 16140 demoivreALT 16169 dvdsmul1 16247 odd2np1lem 16310 odd2np1 16311 opeo 16335 omeo 16336 modgcd 16502 bezoutlem1 16509 dvdsgcd 16514 coprmdvds 16623 coprmdvds2 16624 qredeq 16627 eulerthlem2 16752 modprm0 16776 modprmn0modprm0 16778 coprimeprodsq2 16780 prmreclem6 16892 odmod 19476 cncrng 21300 cncrngOLD 21301 cnsrng 21317 pcoass 24924 clmvscom 24990 dvlipcn 25899 plydivlem4 26204 quotcan 26217 aaliou3lem3 26252 ef2kpi 26387 sinperlem 26389 sinmpi 26396 cosmpi 26397 sinppi 26398 cosppi 26399 sineq0 26433 tanregt0 26448 logneg 26497 lognegb 26499 logimul 26523 tanarg 26528 logtayl 26569 cxpsqrtlem 26611 cxpcom 26648 cubic2 26758 quart1 26766 log2cnv 26854 basellem1 26991 basellem3 26993 basellem5 26995 basellem8 26998 mumul 27091 chtublem 27122 perfectlem1 27140 perfectlem2 27141 perfect 27142 dchrabl 27165 bposlem6 27200 bposlem9 27203 lgsdir2lem4 27239 lgsdir2 27241 lgsquadlem2 27292 lgsquad2 27297 rpvmasum2 27423 mulog2sumlem1 27445 pntibndlem2 27502 pntibndlem3 27503 pntlemf 27516 nvscom 30558 ipasslem11 30769 ipblnfi 30784 hvmulcom 30972 h1de2bi 31483 homul12 31734 riesz3i 31991 riesz1 31994 kbass4 32048 sin2h 37604 heiborlem6 37810 rmym1 42924 expgrowthi 44322 expgrowth 44324 stoweidlem10 46008 perfectALTVlem1 47722 perfectALTVlem2 47723 perfectALTV 47724 tgoldbachlt 47817 2zrngnmlid2 48245 |
| Copyright terms: Public domain | W3C validator |