| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11139, for naming consistency with mulcomi 11189. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11139 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 · cmul 11080 |
| This theorem was proved from axioms: ax-mulcom 11139 |
| This theorem is referenced by: adddir 11172 mullid 11180 mulcomi 11189 mulcomd 11202 mul12 11346 mul32 11347 mul31 11348 mul4r 11350 mul01 11360 muladd 11617 subdir 11619 mulneg2 11622 recextlem1 11815 mulcan2g 11839 divmul3 11849 div23 11863 div13 11865 div12 11866 divmulasscom 11868 divcan4 11871 divmul13 11892 divmul24 11893 divcan7 11898 div2neg 11912 prodgt02 12037 ltmul2 12040 lemul2 12042 lemul2a 12044 ltmulgt12 12050 lemulge12 12053 ltmuldiv2 12064 ltdivmul2 12067 lt2mul2div 12068 ledivmul2 12069 lemuldiv2 12071 supmul 12162 times2 12325 modcyc 13875 modcyc2 13876 modmulmodr 13909 subsq 14182 cjmulrcl 15117 imval2 15124 abscj 15252 sqabsadd 15255 sqabssub 15256 sqreulem 15333 iseraltlem2 15656 iseraltlem3 15657 climcndslem2 15823 prodfmul 15863 prodmolem3 15906 bpoly3 16031 efcllem 16050 efexp 16076 sinmul 16147 demoivreALT 16176 dvdsmul1 16254 odd2np1lem 16317 odd2np1 16318 opeo 16342 omeo 16343 modgcd 16509 bezoutlem1 16516 dvdsgcd 16521 coprmdvds 16630 coprmdvds2 16631 qredeq 16634 eulerthlem2 16759 modprm0 16783 modprmn0modprm0 16785 coprimeprodsq2 16787 prmreclem6 16899 odmod 19483 cncrng 21307 cncrngOLD 21308 cnsrng 21324 pcoass 24931 clmvscom 24997 dvlipcn 25906 plydivlem4 26211 quotcan 26224 aaliou3lem3 26259 ef2kpi 26394 sinperlem 26396 sinmpi 26403 cosmpi 26404 sinppi 26405 cosppi 26406 sineq0 26440 tanregt0 26455 logneg 26504 lognegb 26506 logimul 26530 tanarg 26535 logtayl 26576 cxpsqrtlem 26618 cxpcom 26655 cubic2 26765 quart1 26773 log2cnv 26861 basellem1 26998 basellem3 27000 basellem5 27002 basellem8 27005 mumul 27098 chtublem 27129 perfectlem1 27147 perfectlem2 27148 perfect 27149 dchrabl 27172 bposlem6 27207 bposlem9 27210 lgsdir2lem4 27246 lgsdir2 27248 lgsquadlem2 27299 lgsquad2 27304 rpvmasum2 27430 mulog2sumlem1 27452 pntibndlem2 27509 pntibndlem3 27510 pntlemf 27523 nvscom 30565 ipasslem11 30776 ipblnfi 30791 hvmulcom 30979 h1de2bi 31490 homul12 31741 riesz3i 31998 riesz1 32001 kbass4 32055 sin2h 37611 heiborlem6 37817 rmym1 42931 expgrowthi 44329 expgrowth 44331 stoweidlem10 46015 perfectALTVlem1 47726 perfectALTVlem2 47727 perfectALTV 47728 tgoldbachlt 47821 2zrngnmlid2 48249 |
| Copyright terms: Public domain | W3C validator |