| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcom | Structured version Visualization version GIF version | ||
| Description: Alias for ax-mulcom 11193, for naming consistency with mulcomi 11243. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcom 11193 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 · cmul 11134 |
| This theorem was proved from axioms: ax-mulcom 11193 |
| This theorem is referenced by: adddir 11226 mullid 11234 mulcomi 11243 mulcomd 11256 mul12 11400 mul32 11401 mul31 11402 mul4r 11404 mul01 11414 muladd 11669 subdir 11671 mulneg2 11674 recextlem1 11867 mulcan2g 11891 divmul3 11901 div23 11915 div13 11917 div12 11918 divmulasscom 11920 divcan4 11923 divmul13 11944 divmul24 11945 divcan7 11950 div2neg 11964 prodgt02 12089 ltmul2 12092 lemul2 12094 lemul2a 12096 ltmulgt12 12102 lemulge12 12105 ltmuldiv2 12116 ltdivmul2 12119 lt2mul2div 12120 ledivmul2 12121 lemuldiv2 12123 supmul 12214 times2 12377 modcyc 13923 modcyc2 13924 modmulmodr 13955 subsq 14228 cjmulrcl 15163 imval2 15170 abscj 15298 sqabsadd 15301 sqabssub 15302 sqreulem 15378 iseraltlem2 15699 iseraltlem3 15700 climcndslem2 15866 prodfmul 15906 prodmolem3 15949 bpoly3 16074 efcllem 16093 efexp 16119 sinmul 16190 demoivreALT 16219 dvdsmul1 16297 odd2np1lem 16359 odd2np1 16360 opeo 16384 omeo 16385 modgcd 16551 bezoutlem1 16558 dvdsgcd 16563 coprmdvds 16672 coprmdvds2 16673 qredeq 16676 eulerthlem2 16801 modprm0 16825 modprmn0modprm0 16827 coprimeprodsq2 16829 prmreclem6 16941 odmod 19527 cncrng 21351 cncrngOLD 21352 cnsrng 21368 pcoass 24975 clmvscom 25041 dvlipcn 25951 plydivlem4 26256 quotcan 26269 aaliou3lem3 26304 ef2kpi 26439 sinperlem 26441 sinmpi 26448 cosmpi 26449 sinppi 26450 cosppi 26451 sineq0 26485 tanregt0 26500 logneg 26549 lognegb 26551 logimul 26575 tanarg 26580 logtayl 26621 cxpsqrtlem 26663 cxpcom 26700 cubic2 26810 quart1 26818 log2cnv 26906 basellem1 27043 basellem3 27045 basellem5 27047 basellem8 27050 mumul 27143 chtublem 27174 perfectlem1 27192 perfectlem2 27193 perfect 27194 dchrabl 27217 bposlem6 27252 bposlem9 27255 lgsdir2lem4 27291 lgsdir2 27293 lgsquadlem2 27344 lgsquad2 27349 rpvmasum2 27475 mulog2sumlem1 27497 pntibndlem2 27554 pntibndlem3 27555 pntlemf 27568 nvscom 30610 ipasslem11 30821 ipblnfi 30836 hvmulcom 31024 h1de2bi 31535 homul12 31786 riesz3i 32043 riesz1 32046 kbass4 32100 sin2h 37634 heiborlem6 37840 rmym1 42959 expgrowthi 44357 expgrowth 44359 stoweidlem10 46039 perfectALTVlem1 47735 perfectALTVlem2 47736 perfectALTV 47737 tgoldbachlt 47830 2zrngnmlid2 48232 |
| Copyright terms: Public domain | W3C validator |